
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 2 – due on 04.05.2012 – and exercises for the class on 27.04.2012

2.1 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai) (and both
sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable sets
(i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) <∞, then µ(∩∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing a
counterexample for the statement when this condition does not hold.

2.2 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground
floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a
destination at random, uniformly out of the 10 floors, independently of the others. Let X
denote the number of floors on which the elevator stops – i.e. the number of floors that were
chosen by at least one person. Calculate the expectation and the variance of X . (hint: First
notice that the distribution of X is hard to calculate. Find a way to calculate the expectation
and the variance without that.)

2.3 (homework) Calculate the characteristic function of the normal distribution N (m, σ2). (Re-
member the definition from the old times: N (m, σ2) is the distribution on R with density
(w.r.t. Lebesgues measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can and
should use the fact that ∫

∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

2.4 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . . mea-
surable real valued functions on Ω which converge to the limit function pointwise, µ-almost
everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set of x-es
with µ-measure zero.) Assume furthermore that the fn admit a common integrable dominating
function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and n ∈ N, and∫
Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.
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Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued ran-
dom variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment of X
exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

2.5 Weak convergence and densities.

(a) (homework) Prove the following

Theorem 4 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Suppose that fn(x)

n→∞−→ f(x) for every x ∈ R. Then µn ⇒ µ (weakly).

(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively. Use
the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction, consider
G(x) := 1− F (x).

(b) Show examples of the following facts:

i. It can happen that the fn converge pointwise to some f , but the sequence µn is not
weakly convergent, because f is not a density.

ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.

iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.

2.6 For a γ-detector, the times τ1, τ2, . . . that elapse between consecutive hits are independent
random varibales which are exponentially distributed with Eτi = 1. That is, their common
density is f(x) = e−x1[0,∞)(x) (where 1 stands for indicator function). (We measure time in
seconds.)

Use the Cramer large deviation theorem to estimate the probability that we have to wait less
than 500 seconds for the 1000-th hit.

2.7 (homework) Let Xi, X2, . . . , Xn be independent random variables with Poisson distribution

Xi ∼ Poi(λ). (That is, P(Xi = k) = e−λ λk

k!
for k = 0, 1, 2, . . . .) Use the Cramer large deviation

theorem to estimate the probability P(
∑n

k=1Xk > 1000)

(a) for λ = 1, n = 500,

(b) for λ = 500, n = 1.

2.8 Change of measure in the proof of the Cramer theorem. Let µ be a probability distribution on
R and Z(λ) :=

∫
R
eλx dµ(x) its moment generating function. Suppose that Z(λ) is finite on

the interval (λ, λ) with λ < 0 < λ. Let Î(λ) := logZ(λ), y ∈ R and suppose that λ∗ ∈ (λ, λ)
can be chosen such that Î ′(λ∗) = y. Now let µ∗ be the probability distribution on R which is
absolutely continuous w.r.t. µ, and its density is 1

Z(λ∗)
eλ

∗x – that is,

dµ∗(x) =
1

Z(λ∗)
eλ

∗x dµ(x).
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(a) (homework) Show that the expectation of µ∗ is exactly y – that is,
∫
R
x dµ∗ = y. (Don’t

worry much about exchanging differentiation and integrals.)

(b) Let X1, X2, . . . , Xn be i.i.d random variables with distribution µ, and let X∗

1 , X
∗

2 , . . . , X
∗

n

be i.i.d random variables with distribution µ∗. Denote the distribution of Sn := X1+X2+
· · ·+Xn by µn and the distribution of S∗

n := X∗

1 +X∗

2 + · · ·+X∗

n by µ∗

n. Show that

dµ∗

n(x) =
1

Z(λ∗)n
eλ

∗x dµn(x).

(Hint: condsider the joint distribution of (X∗

1 , X
∗

2 , . . . , X
∗

n) (on R
n). How is this related

to the joint distribution of (X1, X2, . . . , Xn)?)
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