# Mathematical Statistical Physics - LMU München, summer semester 2012 <br> Hartmut Ruhl, Imre Péter Tóth 

Homework sheet 4 - due on 18.05.2012 - and exercises for the class on 11.05.2012
$4.1 \Gamma$ function and polar coordinates practice. Calculate the ( $n-1$ )-dimensional) surface volume $s_{n}(r)$ of the $n$-dimensional sphere with radius $r$, for every positive integer $n$ in terms of the $\Gamma$ function defined as

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t
$$

hint: integrate $f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{2 \pi} \pi} e^{-\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{2}}$ on $\mathbb{R}^{n}$.
4.2 Let the random vector $\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ be uniformly distributed on the (surface of the) N dimensional sphere with radius $\sqrt{2 N E}$, where $E \in(0, \infty)$ is a fixed number. Find the limit distribution of $v_{1}$ as $N \rightarrow \infty$. hint: calculate the density for each $N$ using the result of Exercise 1, then use the Stirling formula

$$
\Gamma(x)=\sqrt{\frac{2 \pi}{x}}\left(\frac{x}{e}\right)^{x}(1+o(1)) .
$$

4.3 (homework) Let the random vector $\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ be uniformly distributed on the simplex

$$
\left\{\left(v_{1}, \ldots, v_{N}\right) \in \mathbb{R}^{N}: 0 \leq v_{i}, v_{1}+\cdots+v_{N}=N E\right\}
$$

where $E \in(0, \infty)$ is a fixed number. Find the limit distribution of $v_{1}$ as $N \rightarrow \infty$.
4.4 We roll a fair die 10 times and record the results. Let $X$ be the random 10-digit number we get. Calculate the entropy of $X$.
4.5 (homework) We toss a biased coin with $\mathbb{P}($ heads $)=p \in(0,1) 10$ times and record the results. Let $Y$ be the random 10 -long string we get. Calculate the entropy of $Y$.
4.6 Maximum entropy principle. The maximum entropy principle describes the probability measures that have maximum relative entropy w.r.t some reference measure under certain constraints - namely, with the integrals of certain (arbitrary) functions being pre-given:

Theorem 1 (Maximum entropy principle) Let $(\Omega, \mathcal{F}, \nu)$ be a (not necessarily probability) measure space. Suppose that $X_{1}, \ldots, X_{n}$ are pre-given measurable (real-valued) functions on $(\Omega, \mathcal{F})$ and $m_{1}, \ldots, m_{n}$ are pre-given real numbers. We consider those probability measures on $(\Omega, \mathcal{F})$, w.r.t. which the integrals of our pre-given functions are exactly the pre-given numbers:

$$
\mathcal{P}(\underline{X}, \underline{m}):=\left\{\mu \text { probability measure on }(\Omega, \mathcal{F}): \int_{\Omega} X_{i} \mathrm{~d} \mu=m_{i} \text { for } i=1, \ldots, n\right\} .
$$

Suppose that we can choose $t_{1}, \ldots, t_{n} \in \mathbb{R}$ with the following properties:

- $Z_{\underline{t}}:=\int_{\Omega} e^{-\sum_{i=1}^{n} t_{i} X_{i}(\omega)} \mathrm{d} \nu(\omega)<\infty$,
- the probability measure $\mu_{\underline{\underline{t}}}$ on $(\Omega, \mathcal{F})$ which is absolutely continuous w.r.t. $\nu$, with density $\rho_{\underline{t}}(\omega):=\frac{1}{Z_{\underline{t}}} e^{-\sum_{i=1}^{n} t_{i} X_{i}(\omega)}$ satisfies $\mu_{\underline{\underline{t}}} \in \mathcal{P}(\underline{X}, \underline{m})$. Then $\mu_{\underline{\underline{t}}}$ is the (unique) probability measure in $\mathcal{P}(\underline{X}, \underline{m})$ which has maximal entropy w.r.t $\nu$, and

$$
S\left(\mu_{\underline{t}} ; \nu\right)=\sum_{i=1}^{n} t_{i} m_{i}+\log Z_{\underline{\underline{t}}} .
$$

Use this theorem to find (the distribution of) the random variable $X$ with maximum entropy (if it exist)
(a) w.r.t. Lebesgue measure on $\mathbb{R}$, under the constraint $\mathbb{E} X=m$,
(b) w.r.t. Lebesgue measure on $\mathbb{R}^{+}$, under the constraint $\mathbb{E} X=m$,
(c) (homework) w.r.t. Lebesgue measure on $\mathbb{R}$, under the constraints $\mathbb{E} X=m, \operatorname{Var} X=v$,
(d) (homework) w.r.t. the counting measure on $\mathbb{N}$, under the constraint $\mathbb{E} X=m$.
4.7 (homework) Microcanonical description of the free gas. Consider $N$ identical particles of mass $m$ in a box $\Lambda \subset \mathbb{R}^{3}$ (with volume $V$ ), with the Hamiltonian

$$
H(\underline{q}, \underline{p})=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}
$$

(the particles are non-interacting). Fix the total energy to be $E$.
(a) Describe the microcanonical distribution $\mu_{\text {micr }}=\mu_{N, V, E}$.
(b) Calculate the microcanonical partition function $Z_{\text {micr }}=Z(N, V, E)$. (Use the result of Exercise 1.)
(c) Calculate the entropy $S(N, V, E)$ of $\mu_{\text {micr }}$ (relative to the "natural reference measure", which is the conditional measure of the Lebesgue measure (of the phase space) on the $\{H=E\}$ surface).
(d) Set $E=N u, V=N v$ with $u, v$ fixed constants, so $S(N, V, E)$ becomes $S_{u, v}(N)$. How does $S_{u, v}(N)$ scale with $N$ ? Use the Stirling formulas

$$
\Gamma(x)=\sqrt{\frac{2 \pi}{x}}\left(\frac{x}{e}\right)^{x}(1+o(1)) \quad, \quad n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+o(1)) .
$$

Have you not forgotten to factorize the phase space due to the indistinguishability of the particles?

