
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 4 – due on 18.05.2012 – and exercises for the class on 11.05.2012

4.1 Γ function and polar coordinates practice. Calculate the ((n− 1)-dimensional) surface volume
sn(r) of the n-dimensional sphere with radius r, for every positive integer n in terms of the Γ
function defined as

Γ(x) :=

∫ ∞

0

tx−1e−t dt.

hint: integrate f(x1, . . . , xn) =
1√
2π
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x
2
1
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2 on R
n.

4.2 Let the random vector (v1, v2, . . . , vN) be uniformly distributed on the (surface of the) N -
dimensional sphere with radius

√
2NE, where E ∈ (0,∞) is a fixed number. Find the limit

distribution of v1 as N → ∞. hint: calculate the density for each N using the result of
Exercise 1, then use the Stirling formula

Γ(x) =

√

2π

x

(x

e

)x

(1 + o(1)).

4.3 (homework) Let the random vector (v1, v2, . . . , vN ) be uniformly distributed on the simplex

{(v1, . . . , vN) ∈ R
N : 0 ≤ vi, v1 + · · ·+ vN = NE},

where E ∈ (0,∞) is a fixed number. Find the limit distribution of v1 as N → ∞.

4.4 We roll a fair die 10 times and record the results. Let X be the random 10-digit number we
get. Calculate the entropy of X .

4.5 (homework) We toss a biased coin with P(heads) = p ∈ (0, 1) 10 times and record the results.
Let Y be the random 10-long string we get. Calculate the entropy of Y .

4.6 Maximum entropy principle. The maximum entropy principle describes the probability mea-
sures that have maximum relative entropy w.r.t some reference measure under certain con-
straints – namely, with the integrals of certain (arbitrary) functions being pre-given:

Theorem 1 (Maximum entropy principle) Let (Ω,F , ν) be a (not necessarily probability)
measure space. Suppose that X1, . . . , Xn are pre-given measurable (real-valued) functions on
(Ω,F) and m1, . . . , mn are pre-given real numbers. We consider those probability measures on
(Ω,F), w.r.t. which the integrals of our pre-given functions are exactly the pre-given numbers:

P(X,m) :=

{

µ probability measure on (Ω,F) :

∫

Ω

Xi dµ = mi for i = 1, . . . , n

}

.

Suppose that we can choose t1, . . . , tn ∈ R with the following properties:

• Zt :=
∫

Ω
e−

∑
n

i=1
tiXi(ω) dν(ω) < ∞,

• the probability measure µt on (Ω,F) which is absolutely continuous w.r.t. ν, with density
ρt(ω) := 1

Zt

e−
∑

n

i=1
tiXi(ω) satisfies µt ∈ P(X,m). Then µt is the (unique) probability

measure in P(X,m) which has maximal entropy w.r.t ν, and

S(µt; ν) =
n

∑

i=1

timi + logZt.
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Use this theorem to find (the distribution of) the random variable X with maximum entropy
(if it exist)

(a) w.r.t. Lebesgue measure on R, under the constraint EX = m,

(b) w.r.t. Lebesgue measure on R
+, under the constraint EX = m,

(c) (homework) w.r.t. Lebesgue measure on R, under the constraints EX = m, VarX = v,

(d) (homework) w.r.t. the counting measure on N, under the constraint EX = m.

4.7 (homework) Microcanonical description of the free gas. Consider N identical particles of mass
m in a box Λ ⊂ R

3 (with volume V ), with the Hamiltonian

H(q, p) =
N
∑

i=1

~pi
2

2m

(the particles are non-interacting). Fix the total energy to be E.

(a) Describe the microcanonical distribution µmicr = µN,V,E.

(b) Calculate the microcanonical partition function Zmicr = Z(N, V, E). (Use the result of
Exercise 1.)

(c) Calculate the entropy S(N, V, E) of µmicr (relative to the “natural reference measure”,
which is the conditional measure of the Lebesgue measure (of the phase space) on the
{H = E} surface).

(d) Set E = Nu, V = Nv with u, v fixed constants, so S(N, V, E) becomes Su,v(N). How
does Su,v(N) scale with N? Use the Stirling formulas

Γ(x) =

√

2π

x

(x

e

)x

(1 + o(1)) , n! =
√
2πn

(n

e

)n

(1 + o(1)).

Have you not forgotten to factorize the phase space due to the indistinguishability of the
particles?
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