Mathematical Statistical Physics – LMU München, summer semester 2012 Hartmut Ruhl, Imre Péter Tóth

Homework sheet 5 - due on 25.05.2012 - and exercises for the class on 18.05.2012

5.1 Grand canonical reference measure and identical particles. In the grand canonical description of a particle system in the container $\Lambda \subset \mathbb{R}^d$, we "try to" use the phase space

$$\Omega^{\Lambda} := \dot{\cup}_{n>0} \Omega^{\Lambda}_n,$$

where Ω_n^{Λ} is the phase space of an *n*-particle system, so

$$\Omega_n^{\Lambda} = (\lambda \times \mathbb{R}^d)^n.$$

We "try to" equip this phase space with the reference measure

$$\lambda^{\Lambda} = \sum_{n \ge 0} \lambda_{\Omega^{\Lambda}_n},$$

where $\lambda_{\Omega_n^{\Lambda}}$ is the Lebesgue measure on Ω_n^{Λ} , that is $\lambda_{\Omega_n^{\Lambda}} = (\lambda_{\Lambda} \otimes \lambda_{\mathbb{R}^d})^{\otimes n}$. Now the Liouville theorem ensures that this measure is invariant under any Hamiltonian dynamics.

- (a) Show that the choice of the phase space is consistent in the sense that if $\Lambda = \Lambda_1 \dot{\cup} \Lambda_2$, then $\Omega^{\Lambda} = \Omega^{\Lambda_1} \times \Omega^{\Lambda_2}$ (with suitable natural identifications).
- (b) However, show that the choice of λ^{Λ} is inconsistent: $\lambda^{\Lambda} \neq \lambda^{\Lambda_1} \otimes \lambda^{\Lambda_2}$.
- (c) Notice that in our choice of the measure we have some "freedom": If we want the Liouville theorem to ensure that the measure is invariant, then any measure of the form

$$\lambda^{\Lambda} = \sum_{n \ge 0} c_n \lambda_{\Omega^{\Lambda}_n}$$

will do, with $0 < c_n \in R$. How should we choose the sequence c_n , if we want to ensure also that $\lambda^{\Lambda} = \lambda^{\Lambda_1} \otimes \lambda^{\Lambda_2}$?

- (d) What has this got to do with indistinguishability of the particles?
- 5.2 Canonical entropy and patrition function. The canonical measures $\mu_{\Lambda,\beta,N}$ describing a Hamiltonian particle system (with Hamiltonian \mathcal{H}) of N particles in the container $\Lambda \subset \mathbb{R}^d$ are probability measures on the phase space Ω_N^{Λ} which are absolutely continuous w.r.t. $\lambda_{\Omega_N^{\Lambda}}$ (see footnote ¹), and have density

$$\rho_{\Lambda,\beta,N}(x) = \frac{1}{Z(\Lambda,\beta,N)} e^{-\beta \mathcal{H}(x)}$$

See the first exercise for notation. β is a parameter and $Z(\Lambda, \beta, N)$ is the suitable normalizing factor called the "partition function". The canonical entropy S^{can} is defined as the relative entropy

$$S^{can}(\Lambda,\beta,N) = H(\mu_{\Lambda,\beta,N};\lambda_{\Omega_N^{\Lambda}}),$$

where H stands for relative entropy (not to be mixed with the Hamiltonian \mathcal{H}).

¹If we want to get "correct dependence on N", we better use $c_N \lambda_{\Omega_N^{\Lambda}} = \frac{1}{N!} \lambda_{\Omega_N^{\Lambda}}$ as the reference measure, as we learned from Exercise 5.1 and 4.7

- (a) Let E denote the expectation of \mathcal{H} w.r.t. $\mu_{\Lambda,\beta,N}$. Express S^{can} in terms of β , E and Z
 - i. using the definition of relative entropy,
 - ii. using the maximum entropy principle.
- (b) What is the physical meaning of $\log Z$?
- 5.3 (homework) Grand canonical entropy and patrition function. The grand canonical measures $\mu_{\Lambda,\beta,\beta'}$ describing a Hamiltonian particle system (with Hamiltonian \mathcal{H}) in the container $\Lambda \subset \mathbb{R}^d$ are probability measures on the phase space Ω^{Λ} which are absolutely continuous w.r.t. λ^{Λ} , and have density

$$\rho_{\Lambda,\beta,\beta'}(x) = \frac{1}{Z(\Lambda,\beta,\beta')} e^{-\beta \mathcal{H}(x) - \beta' N(x)}.$$

See the first exercise for notation. Here N denotes the particle counting function $N : \Omega^{\Lambda} \to \mathbb{N}$, N(x) = n if $x \in \Omega_n^{\Lambda}$. β and β' are parameters and $Z(\Lambda, \beta, \beta')$ is the suitable normalizing factor called the "partition function". The grand canonical entropy S^{gr} is defined as the relative entropy

$$S^{gr}(\Lambda, \beta, \beta') = H(\mu_{\Lambda, \beta, \beta'}; \lambda^{\Lambda}),$$

where H again stands for relative entropy (not to be mixed with the Hamiltonian \mathcal{H}).

- (a) Let E denote the expectation of \mathcal{H} and \bar{N} denote the expectation of N w.r.t. $\mu_{\Lambda,\beta,\beta'}$. Express S^{gr} in terms of β , E, β' , \bar{N} and Z
 - i. using the definition of relative entropy,

!

- ii. using the maximum entropy principle.
- (b) What is the physical meaning of $\log Z$?
- 5.4 (homework) Canonical description of the free gas. Consider the free gas with the Hamiltonian given in Exercise 4.7.
 - (a) Describe the canonical distribution.
 - (b) Calculate the canonical partition function. Keep the footnote in mind.
 - (c) Calculate the canonical entropy.
 - (d) Set V = Nv where V is the volume of Λ , so $S^{can}(\Lambda, \beta, N)$ becomes $S^{can}_{\beta,v}(N)$. How does $S^{can}_{\beta,v}(N)$ scale with N? Compare with the result of Exercise 4.7.
- 5.5 Grand canonical description of the free gas. Consider the free gas with the Hamiltonian given in Exercise 4.7.
 - (a) Describe the grand canonical distribution.
 - (b) Calculate the grand canonical partition function. Keep the footnote in mind.
 - (c) Calculate the grand canonical entropy.
 - (d) Let V be the volume of Λ . How does $S^{gr}(V, \beta, \beta')$ scale with V? Compare with the result of Exercise 4.7. and the previous exercise.
- 5.6 (homework) Free gas with several types of particles. Consider a container which is devided into k parts, separated by thin walls. Each part has volume V_k and contains N_k identical particles of a free gas, which, however, differ from the particles in other compartments. The system is in equilibrium as much as it can be: exchange of energy is allowed. Now we remove the walls, and wait for equilibrium to be reached again. How much does the entropy change?

- 5.7 Grand canonical description of the free gas and the Poisson process. Consider the grand canonical ensamble of the free gas in a container Λ with parameters β , β' .
 - (a) Let $\Lambda_1 \subset \Lambda$. What is the distribution of the (random) number N_1 of particles that are in Λ_1 ?
 - (b) Let Λ_1 and Λ_2 be two *disjoint* subsets of Λ . (That is, $\Lambda_1, \Lambda_2 \subset \Lambda, \Lambda_1 \cap \Lambda_2 = \emptyset$.) Let N_i denote the (random) number of particles in Λ_i (i = 1, 2). What is the *joint distribution* of N_1 and N_2 ?