
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 9 – due on 22.06.2012 – and exercises for the class on 15.06.2012

9.1 (homework) Canonical partition function and density of states. As you all know, the canonical
ensamble (or canonical distribution) has the density fα,β(ω) =

1
Z(α,β)

e−βH(ω) w.r.t. an approriate

reference measure µref on the phase space Ω = {ω}. Here β is the inverse temperature, and α
denotes all the possibles other parameters (e.g. volume, particle number, etc.) which influence
the shape of Ω, µref and the Hamiltonian H : Ω → R. The normalizing factor Z(α, β) is called
the partition function (we suppose that it is finite).

Denote by µE the push-forward of µref from Ω to R by H – which means that

µE(B) := µref({ω : H(ω) ∈ B})

for any Borel B ⊂ R. This could vaguely be called the “distribution of H w.r.t. µref”. (Only
vaguely, because µref is usually not a probability measure, so H : Ω → R cannot be called a
random variable if we consider Ω equipped with µref .) Suppose (for simplicity only) that this
µE is absolutely continuous w.r.t. Lebesgue measure on R, and denote its density by ρ = ρα(E).
This ρα can be called the density of states.

(a) When Ω is equipped with the canonical measure, the energy is a random variable. Show
that under the above condition (that µE is absolutely continuous w.r.t. Lebesgue measure)
this random variable is absolutely continuous (w.r.t Lebesgue measure), and calculate the
density in terms of ρ, Z and β.

(b) Express Z(α, β) with the help of β and ρα (or β and µE, if you want to be more general),
and be happy that this is possible.

9.2 (homework) Energy fluctuations for the free gas. Consider the free gas in the canonical en-
samble, and keep the density fixed by setting V = Nv with v = const. Also fix the temperature
by setting β = const. Now for every N the energy density H/V is a random variable.

(a) Calculate the expectation and the variance of this H/V as a function of N . What can we
say about the weak convergence of H/V in the limit N → ∞?

(b) Set N = 1023. Estimate the probability that H/V deviates from its expectation with at
least 0.000001%.

9.3 Density fluctuations for the free gas. Consider the free gas in the grand canonical ensamble.
Keeping β and β ′ fixed, the density N/V is a random variable parametrized by V .

(a) Calculate the expectation and the variance of this N/V as a function of V . What can we
say about the weak convergence of N/V in the limit V → ∞?

(b) Set the parameters so that EN = 1023. Estimate the probability that N/V deviates from
its expectation with at least 0.000001%.

9.4 Tempered and stable pair interactions. Let Φ : R+ → R ∪ {∞} be a pair interaction potential
which satisfies the following:

(a) Φ is bounded from below,

(b) There is an R1 > 0 such that Φ(r) = ∞ for all r ≤ R1,
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(c) There is an R2 < ∞ such that Φ(r) = 0 for all r ≥ R2.

Show that Φ is tempered and stable.

9.5 Tempered and stable pair interactions II. Let Φ : R+ → R∪{∞} be a pair interaction potential
which satisfies the following:

(a) Φ is bounded from below,

(b) There is an R1 > 0 such that Φ(r) = ∞ for all r ≤ R1,

(c) There is an R2 < ∞ such that Φ(r) ≤ 0 for all r ≥ R2,

(d) Φ(r) → 0 exponentially fast as r → ∞.

Show that Φ is tempered and stable.

9.6 Basics of convex functions. If a and b are elements of a linear space V over R, then their
convex combinations are the elements αa+ βb where 0 ≤ α ∈ R, 0 ≤ β ∈ R and α+ β = 1.
A set A ⊂ V is called convex if it contains every convex combination of its elements. For a
convex A ⊂ V , the function f : A → R ∪ {∞} is called convex if

f(αa+ βb) ≤ αf(a) + βf(b)

for any a, b ∈ A, 0 ≤ α ∈ R, 0 ≤ β ∈ R and α + β = 1. Show that convexity is a very strong
regularity property by proving the following statements: Suppose f : I → R ∪ {∞} is convex
and finite on the open (but possibly infinite) interval I ⊂ R. Then

(a) it is necessarily continuous,

(b) it has one-sided derivatives everywhere on I,

(c) These one-sided derivatives are monotonically non-decreasing,

(d) f is differentiable in all but at most countably many points.

9.7 Midpoint convexity. Let I ⊂ R be a (possibly infinite) interval. The function f : I → R∪{∞} is

called midpoint convex, if f(a+b
2
) ≤ f(a)+f(b)

2
for every a, b ∈ I. Show that if f : I → R∪{∞}

is finite, midpoint convex and bounded on a subinterval ∅ 6= J ⊂ I, then it is bounded on any
bounded interval, (continuous) and convex.

9.8 (homework) Jensen’s inequality. If a1, . . . , an are elements of a linear space V over R, then
their convex combinations are the elements

∑n

i=1 αiai where 0 ≤ α1, . . . , αn ∈ R and
∑n

i=1 αi =
1.

(a) Show that if A ⊂ V is convex and a1, . . . , an ∈ A, then any convex combination
∑n

i=1 αiai
is also in A.

(b) Show that if A ⊂ V is convex, f : A → R ∪ {∞} is convex and a1, . . . , an ∈ A, 0 ≤
α1, . . . , αn ∈ R and

∑n

i=1 αi = 1, then

f

(

n
∑

i=1

αiai

)

≤
n
∑

i=1

αif(ai).

This is the simplest form of Jensen’s inequality.
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