Mathematical Statistical Physics – LMU München, summer semester 2012 Hartmut Ruhl, Imre Péter Tóth

Homework sheet 13 – due on 20.07.2012 – and exercises for the class on 13.07.2012

- 13.1 Prove a continuous time version (about endomorphism semigroups) of the von Neumann L^2 ergodic theorem using the discrete time version (about endomorphisms). *Hint: define* $F(x) := \int_0^1 f(S^s) \, \mathrm{d}s.$
- 13.2 (homework) Let (M, \mathcal{F}, T, μ) be an endomorphism and $n \in \mathbb{N}$.
 - (a) Show that if T^n is ergodic (w.r.t. μ), then T is also ergodic.
 - (b) Show that the converse is not true in general.
- 13.3 Rotation of the circle. Consider the phase space $S := \mathbb{R}/\mathbb{Z}$, which is a circle (or, if you like, a 1-dimensional torus, or the unit interval with periodic boundary conditions), with Lebesgue measure and the map $T : x \mapsto x + \alpha$ where $\alpha \in \mathbb{R}$.
 - (a) Show that T is an endomorphism.
 - (b) Show that T is ergodic iff α is irrational.
- 13.4 Weil theorem. Show the following: Let $S = \mathbb{R}/\mathbb{Z}$, $\alpha \in \mathbb{R}$ irrational and $I \subset S$ an interval. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{I}(\{k\alpha\}) = \operatorname{Leb}(I).$$

Here $\{k\alpha\}$ denotes the fractional part of $k\alpha$, and could be written just as $k\alpha$, since we consider this as $k\alpha \in S$ anyway.

Hint: use the ergdicity from the previous exercise and approximate indicator functions by continuous ones.

- 13.5 (homework) (An exercise of Arnold.) Consider the first digits (in base 10) of the sequence of numbers $1, 2, 4, \ldots, 2^n, \ldots$ Does 7 occur? Does 8 occur? Which one occurs more often? *Hint:* $\log_{10} 2$ is irrational. Look at the previous exercise.
- 13.6 On $S = \mathbb{R}/\mathbb{Z}$ with Lebesgue measure, consider the endomorphism group (flow) $S^t(x) := x + \alpha t$ where $\alpha \in \mathbb{R}$. Show that this is ergodic for every $\alpha \neq 0$. (Remark: actually this is even *uniquely ergodic*, meaning that this flow has only one invariant measure.)
- 13.7 Perron-Frobenius operator
 - (a) Let (M, \mathcal{F}, T) be an endomorphism and assume that x is a random point in M distributed as some measure ν on M. What is the distribution of Tx?
 - (b) Let $T : [0,1] \to [0,1]$ be piecewise monotone and almost everywhere differentiable. Let x be a random point of [0,1] with probability density ρ (w.r.t. Lebesgue measure). Show that Tx also has a density and calculate it.
 - (c) How does this work in higher dimensions?
- 13.8 (homework) Gauss map. Consider the map $T : (0, 1] \to (0, 1]$ defined as $Tx := \frac{1}{x} (mod1)$. Show that the measure on (0, 1] with density $\frac{const}{1+x}$ is invariant.

13.9 (homework) The simplest possible convergence to equilibrium. Consider the map $T: S \to S$, Tx = 2x. Let ν be a measure on S which is absolutely continuous w.r.t. Lebesgue measure, with a density φ which is Lipschitz continuous meaning

$$Lip(\varphi) := \sup_{x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|dist(x - y)|} < \infty.$$

Show that $\nu_n := \nu \circ T^{-n}$ converges to Lebesgue measure weakly. Hint: What happens with $Lip(\varphi)$ under time evolution?

- 13.10 Perron-Frobenius operator, invertible dynamics and entropy
 - (a) Let (M, \mathcal{F}, T, μ) be an endomorphism and assume that x is a random point in M distributed as some measure ν on M, but possibly $\nu \neq \mu$. Assume however, that $\nu \ll \mu$ with density ρ . Show that $Tx \ll \mu$ as well, and calculate the density.
 - (b) (M, \mathcal{F}, T, μ) be an *automorphism* and ν a measure on (M, \mathcal{F}) such that $\nu \ll \mu$. Define ν_n as $\nu_n := (\hat{T}^*)^n \nu = \nu \circ T^{in}$. Calculate the relative entropy $S_n = H(\nu_n | \mu)$.
 - (c) How come?