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Homework sheet 2 – solutions – and exercises for the class on 27.04.2012

2.1 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai) (and both
sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable sets
(i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) <∞, then µ(∩∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing a
counterexample for the statement when this condition does not hold.

2.2 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground
floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a
destination at random, uniformly out of the 10 floors, independently of the others. Let X
denote the number of floors on which the elevator stops – i.e. the number of floors that were
chosen by at least one person. Calculate the expectation and the variance of X . (hint: First
notice that the distribution of X is hard to calculate. Find a way to calculate the expectation
and the variance without that.)

2.3 (homework) Calculate the characteristic function of the normal distribution N (m, σ2). (Re-
member the definition from the old times: N (m, σ2) is the distribution on R with density
(w.r.t. Lebesgues measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can and
should use the fact that

∫ ∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

Solution: First we reduce the general case to the case of the standard normal distribution
using the fact (known from old times, easy to check from the formulas) that if X ∼ N (0, 1)
and Y = m+ σX , then Y ∼ N (m, σ2). As a result, the characteristic function for the normal
distribution with expectation m and variance σ2 is

ψN (m,σ2)(t) = E(eitY ) = E(eitm+itσX ) = eitmE(ei(tσ)X ) = eitmψN (0,1)(σt), (1)

where ψN (0,1)(t) := E(eitX) is the characteristic function of the standard normal distribution.

Now we go on to calculate

ψN (0,1)(t) = E(eitX) =

∫ ∞

−∞

eitx
1√
2π
e−

x2

2 dx =

∫ ∞

−∞

1√
2π
e−

x2−2itx
2 dx =

=

∫ ∞

−∞

1√
2π
e−

(x−it)2−(it)2

2 dx = e−
t2

2

∫ ∞

−∞

1√
2π
e−

(x−it)2

2 dx.
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We use the substitution y := x− it to get

ψN (0,1)(t) = e−
t2

2

∫ ∞

−∞

1√
2π
e−

y2

2 dx = e−
t2

2 .

In the last step we used that the standard normal densitiy function (just like every probability
density function) intergates to 1. Writing this back to (1), we get the final result

ψN (m,σ2)(t) = eitme−
(σt)2

2 .

Remark: The substitution y = x − it is not completely trivial to make rigorous. In fact, with
this substitution, while x runs over the real line, y will run over a line in the complex plane,
namely the line γ of complex numbers with imaginary part −it, so leaving the boundaries as
−∞ and ∞ after the substitution is cheating. To make the argument precise, one has to show
that the integral on γ is equal to the integral on the real line. This is a typical application of
a standard, but strong tool of complex analysis, called the residue theorem. I will not go into
that here, and I don’t expect the students to do so either.

2.4 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . . mea-
surable real valued functions on Ω which converge to the limit function pointwise, µ-almost
everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set of x-es
with µ-measure zero.) Assume furthermore that the fn admit a common integrable dominating
function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and n ∈ N, and
∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued ran-
dom variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment of X
exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

2.5 Weak convergence and densities.

(a) (homework) Prove the following

Theorem 4 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Suppose that fn(x)

n→∞−→ f(x) for every x ∈ R. Then µn ⇒ µ (weakly).

(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively. Use
the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction, consider
G(x) := 1− F (x).

(b) Show examples of the following facts:
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i. It can happen that the fn converge pointwise to some f , but the sequence µn is not
weakly convergent, because f is not a density.

ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.

iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.

Solution:

(a) For every n ∈ N and y ∈ R, the (cumulative) distribution function Fn of µn at y can be
calculated as

Fn(y) =

∫

(−∞,y]

fn(x) dx,

while the distribution function of µ at y is

F (y) =

∫

(−∞,y]

f(x) dx.

Since by assumption f(x) = limn→∞ fn(x) = lim infn→∞ fn(x), the Fatou lemma implies

F (y) =

∫

(−∞,y]

lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫

(−∞,y]

fn(x) dx = lim inf
n→∞

Fn(x). (2)

A completely similar argument works for the “tail distribution functions”

Gn(y) = 1− Fn(y) =

∫

[y,∞)

fn(x) dx, G(y) = 1− F (y) =

∫

[y,∞)

f(x) dx,

which gives
G(y) ≤ lim inf

n→∞
Gn(x).

But this implies

F (y) = 1−G(y) ≥ 1− lim inf
n→∞

Gn(x) = lim sup
n→∞

(1−Gn(x)) = lim sup
n→∞

Fn(x).

This, together with (2) implies

F (y) = lim
n→∞

Fn(y) for every y ∈ R,

which is known from the lecture to be equivalent to weak convergence of the measures.

2.6 For a γ-detector, the times τ1, τ2, . . . that elapse between consecutive hits are independent
random varibales which are exponentially distributed with Eτi = 1. That is, their common
density is f(x) = e−x1[0,∞)(x) (where 1 stands for indicator function). (We measure time in
seconds.)

Use the Cramer large deviation theorem to estimate the probability that we have to wait less
than 500 seconds for the 1000-th hit.

2.7 (homework) Let Xi, X2, . . . , Xn be independent random variables with Poisson distribution

Xi ∼ Poi(λ). (That is, P(Xi = k) = e−λ λk

k!
for k = 0, 1, 2, . . . .) Use the Cramer large deviation

theorem to estimate the probability P(
∑n

k=1Xk > 1000)
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(a) for λ = 1, n = 500,

(b) for λ = 500, n = 1.

Solution: To apply the Cramer theorem, we first need to calculate the rate function for the
Poisson distribution. The first step in the calculation is the moment generating function Z.
Unlike in the lecture, I will denote the argument of Z by t (and not λ, because λ is already
used for the parameter of the Poisson distribution). So

Z(t) := E(etX) =

∞
∑

k=0

etke−λλ
k

k!
= e−λ

∞
∑

k=0

(etλ)k

k!
= e−λee

tλ = eλ(e
t−1).

(This exists (the sum converges) for every t ∈ R.) The second step is the logarithmic moment
generating function:

Î(t) := logZ(t) = λ(et − 1).

The rate function I(x) will be obtained as the Legendre transform of Î defined as I(x) :=

supt∈R{xt − ˆI(t)}. This is not difficult, since for every x which is of interest (see later), the
supremum is known to be a maximum, which is obtained at exactly one t∗ = t∗x given by
x = Î ′(t∗). In our case

x = Î ′(t∗) = λet
∗

, so t∗ = log
x

λ
,

and the supremum is

I(x) = xt∗ − Î(t∗) = x log
x

λ
− λ(

x

λ
− 1) = x log

x

λ
− x+ λ.

Note that this calculation works for exactly those values of x, which are obtained as values of
Î ′, in our case x ∈ (x, x) = (0,∞). This is exactly the (open) interval in which the average of
a Poissonian sample can be. So to be absolutely precise,

I(x) =

{

x log x
λ
− x+ λ if x ∈ (0,∞),

0 if not.

Now we are ready to apply the Cramer theorem to estimate the desired probability

P(

n
∑

k=1

Xk > 1000).

We will use the notation Sn =
∑n

k=1Xk.

(a) for λ = 1, n = 500:

P(Sn > 1000) = P(
Sn

n
∈ (2,∞)) ≈ e−n infx∈(2,∞) I(x) = e−500I(2) ≈ e−193.15 ≈ 1.31 · 10−84.

(b) for λ = 500, n = 1:

P(Sn > 1000) = P(
Sn

n
∈ (1000,∞)) ≈ e

−n inf
x∈(1000,∞)

I(x)
= e−1I(1000) ≈ e−193.15 ≈ 1.31·10−84.
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Remark: It is no surprise that the two results are equal. Indeed, the two Sn of the two settings
are identically distributed – both are Poi(500), since the sum of independent Poissonians is
also Poissonian, with the parameters (= expected values) added. This also shows that when
applying the Cramer theorem for a Poisson distribution, n being large or not plays no role. On
the other hand, as example (b) shows, already for n = 1 the theorem says something about
the tail of the distribution function, which is not completely immediate from summation of the
discrete distribution.

It is also no surprise that the result is the same as in the previous exercise about exponentially
distributed random variables. Indeed, with the notation of the two exercises,

{τ1 + τ2 + τ1000 ≤ 500} = {Sn ≥ 1000}
– i.e. the two events are the same –, if Sn denotes the number of hits during the first 500
seconds, which is known to be distributed as Poi(500). This intimate relationship between the
exponential and the Poisson distribution is the key to the mathematical model of the hitting
times, called a Poisson process.

2.8 Change of measure in the proof of the Cramer theorem. Let µ be a probability distribution on
R and Z(λ) :=

∫

R
eλx dµ(x) its moment generating function. Suppose that Z(λ) is finite on

the interval (λ, λ) with λ < 0 < λ. Let Î(λ) := logZ(λ), y ∈ R and suppose that λ∗ ∈ (λ, λ)
can be chosen such that Î ′(λ∗) = y. Now let µ∗ be the probability distribution on R which is
absolutely continuous w.r.t. µ, and its density is 1

Z(λ∗)
eλ

∗x – that is,

dµ∗(x) =
1

Z(λ∗)
eλ

∗x dµ(x).

(a) (homework) Show that the expectation of µ∗ is exactly y – that is,
∫

R
x dµ∗ = y. (Don’t

worry much about exchanging differentiation and integrals.)

(b) Let X1, X2, . . . , Xn be i.i.d random variables with distribution µ, and let X∗
1 , X

∗
2 , . . . , X

∗
n

be i.i.d random variables with distribution µ∗. Denote the distribution of Sn := X1+X2+
· · ·+Xn by µn and the distribution of S∗

n := X∗
1 +X∗

2 + · · ·+X∗
n by µ∗

n. Show that

dµ∗
n(x) =

1

Z(λ∗)n
eλ

∗x dµn(x).

(Hint: condsider the joint distribution of (X∗
1 , X

∗
2 , . . . , X

∗
n) (on R

n). How is this related
to the joint distribution of (X1, X2, . . . , Xn)?)

Solution:

(a) Formally differentiating Z(λ) :=
∫

R
eλx dµ(x), we get

Z ′(λ) :=

∫

R

xeλx dµ(x).

It can be shown – similarly to Exercise 4 – that this is indeed true for λ ∈ (λ, λ), and
this is what you didn’t have to worry about. Having that, we use the definition of µ∗ to
calculate

∫

R

x dµ∗(x) =

∫

R

x
1

Z(λ∗)
eλ

∗x dµ(x) =

∫

R
xeλ

∗x dµ(x)

Z(λ∗)
=
Z ′(λ∗)

Z(λ∗)
.

Now by the definition of Î and λ∗, this is further equal to
∫

R

x dµ∗(x) =
Z ′(λ∗)

Z(λ∗)
= Î ′(λ∗) = y.
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