
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 4 – due on 18.05.2012 – and exercises for the class on 11.05.2012

4.1 Γ function and polar coordinates practice. Calculate the ((n− 1)-dimensional) surface volume
sn(r) of the n-dimensional sphere with radius r, for every positive integer n in terms of the Γ
function defined as

Γ(x) :=

∫ ∞

0

tx−1e−t dt.

hint: integrate f(x1, . . . , xn) =
1√
2π

n e−
x21+···+x2n

2 on R
n.

4.2 Let the random vector (v1, v2, . . . , vN) be uniformly distributed on the (surface of the) N -
dimensional sphere with radius

√
2NE, where E ∈ (0,∞) is a fixed number. Find the limit

distribution of v1 as N → ∞. hint: calculate the density for each N using the result of
Exercise 1, then use the Stirling formula

Γ(x) =

√

2π

x

(x

e

)x

(1 + o(1)).

4.3 (homework) Let the random vector (v1, v2, . . . , vN ) be uniformly distributed on the simplex

{(v1, . . . , vN) ∈ R
N : 0 ≤ vi, v1 + · · ·+ vN = NE},

where E ∈ (0,∞) is a fixed number. Find the limit distribution of v1 as N → ∞.

Solution 1: explicit calculation. Let An(r) denote the (n− 1)-dimensional surface volume
of the simplex {(x1, . . . , xn) ∈ R

n : 0 ≤ xi, x1 + · · · + xn = r} ⊂ R
n. As a warming-up, we

consider how we could calculate the function An if we knew An−1. The r-dependence is trivial
from the scaling of volume with linear size: An(r) = Cnr

n−1. To calculate Cn = An(1), we
integrate

Cn =

∫ 1

0

An−1(r(x1))cn dx1,

where r(x) is the sum x2+ · · ·+xn under the condition x1 = x, so simply r(x1) = 1−x1. A bit
more interesting is the number cn, which has the meaning that the two submanifolds {x1 = x}
and {x1 = x + dx} have the distance cn dx. This cn is indeed a constant (not a function
of x), since our surface is flat. It wouldn’t be hard to find out the value from a geometrical
consideration, but we don’t really need it, so we just go on with the notation, and get

Cn =

∫ 1

0

Cn−1(1− x1)
n−2cn dx1.

Having that considered, we return to the original problem. The density of v1 (with some fixed
N) is

fN(x) =
Cn−1(NE − x)n−2cN

AN(NE)
, for 0 ≤ x ≤ NE.

We don’t (need to) know the values of CN−1, cN and CN , but KN,E := CN−1cN
AN (NE)

has to be the

appropriate normalizing factor so that fN (x) is indeed a density, so

1 =

∫ ∞

−∞
fN(x) dx = KN,E

∫ NE

0

(NE − x)N−2,
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which leads to KN,E = N−1
(NE)N−1 and

fN(x) =

{

N−1
(NE)N−1 (NE − x)N−2, if 0 ≤ x ≤ NE,

0, if not.

With N → ∞, this is easily seen to converge pointwise to

f(x) = lim
N→∞

fN(x) =

{

1
E
e−

x
E , if 0 ≤ x,

0, if not.

This is the density of the exponential distribution with parameter 1
E
, so by the statement of

Exercise 2.5(a), v1 converges weakly to Exp( 1
E
).

(Note that a reference to Exercise 2.5(a) is not really important here: the cumulative distribu-
tion function FN(x) :=

∫ x

−∞ fN(y) dy can be calculated explicitely, and its pointwise convergence

to F (x) = (1− e−
x
E )1[0,∞)(x) can be checked directly.)

Solution 2: making use of the friendship between multiplication, addition and the
exponential function. Let X1,X2,. . . ,XN be i.i.d. random variables distributed as Exp(λ),
with any λ. Their joint density F (x1, x2, . . . , xN) = λe−λx1λe−λx2 . . . λe−λxN is constant on the
simplex {x1 + x2 + · · · + xN = NE, xi ≥ 0}, so the conditional distribution of X1,X2,. . . ,XN

under the condition X1+X2+ · · ·+XN = NE is exactly the uniform measure on the simplex.
That means, the distribution of v1 we are looking for is exactly the same as the conditional
distribution of X1 under the condition X1 +X2 + · · ·+XN = NE. To calculate this, we will
use some knowledge of probability, which is elementary, but was not part of this course.

Introduce the notation U := X1, V := X1+X2+· · ·+XN . Now U is distributed as Exp(λ), and
the distribution of V is also well knonw: it’s called the gamma distribution with parameters
(N, λ) and has the density

fV (v) =

{

λN

Γ(N)
vN−1e−λv, if v ≥ 0,

0, if not.

We also need the joint density of (U, V ). For this purpose, we introduce X := X1 and Y :=
X2 + · · · +XN . The joint distribution of (X, Y ) is easy, because the are independent (unlike
(U, V )), X ∼ Exp(λ) and Y ∼ Gamma(N − 1, λ):

fX,Y (x, y) =

{

λe−λx λN−1

Γ(N−1)
yN−2e−λy, if x ≥ 0 and y ≥ 0,

0, if not.

We obtain (U, V ) as a (linear) transformation of (X, Y ):

(

U
V

)

=

(

1 0
1 1

)(

X
Y

)

.

The matrix J =

(

1 0
1 1

)

is also the Jacobian of the mapping (X, Y ) → (U, V ), so the densitiy

transformation rule gives (with the notation u = x, v = x+ y)

fU,V (u, v) =
1

| det(J)|fX,Y (x, y) =
1

1
fX,Y (u, v − u) =

{

λN

Γ(N−1)
(v − u)N−2e−λv, if v ≥ u ≥ 0,

0, if not.
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The conditional density we are looking for is

fv1(u) = fU |V (u|V = NE) =
fU,V (u,NE)

fV (NE)
=

{

(N − 1) (NE−u)N−2

(NE)N−1 , if 0 ≤ u ≤ NE,

0, if not.

Now we can check the pointwise convergece of the density, or (if you like) calculate the distri-
bution function and check the pointwise convergence of that, as in the first solution. Anyway
we get v1 ⇒ Exp( 1

E
).

Solution 3: heuristically, if we know the result in advance. Let X1,X2,. . . ,XN be i.i.d.
random variables distributed as Exp(λ) as in the previous solution, but now we set λ = 1

E
.

Now the distribution of v1 we are lookiong for is exactly the conditional distribution of X1

under the condition X1 +X2 + · · ·+XN = NE (see the previous solution for the argument).
But now the condition is exactly that

X1 +X2 + · · ·+XN

N
= EX1,

and the law of large numbers states that this always happens – at least in some asymptotic sense,
when N → ∞. so for N → ∞ this condition is empty (meaning a set of probability 1). So the
conditional distribution is the same as the unconditional distribution, so v1 ⇒ X1 ∼ Exp( 1

E
).

This argument can be made precise by allowing some ε deviation from the mean in the condition,
and being careful enough when exchanging the limits N → ∞ and ε → 0.

4.4 We roll a fair die 10 times and record the results. Let X be the random 10-digit number we
get. Calculate the entropy of X .

4.5 (homework) We toss a biased coin with P(heads) = p ∈ (0, 1) 10 times and record the results.
Let Y be the random 10-long string we get. Calculate the entropy of Y .

Solution 1: brute force calculation. Use the notation q = 1 − p. The experiment has 210

possible outcomes, out of which
(

10
k

)

consist of k heads and n−k tails (in some order, for every

k ∈ {0, 1, . . . , 10}). These
(

10
k

)

outcomes have probability pkq10−k). So the definition of entropy
gives

S = −
210
∑

i=1

pi log pi = −
10
∑

k=0

(

10

k

)

pkq10−k log(pkq10−k).

We use log(pkq10−k) = 10 log q + k(log p− log q) to get

S = −
[

(10 log q)

10
∑

k=0

(

10

k

)

pkq10−k + (log p− log q)

10
∑

k=0

k

(

10

k

)

pkq10−k

]

.

The coefficient of (10 log q) is the sum of the probabilities in a binomial distribution with
parameters (10, p), so it is 1 = p+ q. The coefficient of (log p− log q) is exactly the expectation
of this binomial distribution, so it is 10p (see also exercise 1.1(b)). We got

S = − [(10 log q)(p+ q) + (log p− log q)10p] = −10(p log p+ q log q).

Solution 2: additivity of the entropy. Use the notation q = 1 − p. The entropy of a
sequence of indepentent random variables is the sum of the entropies, so the entropy we are
looking for is 10 times the entropy of the outcome of a single coint toss. A single toss has two
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possible outcomes with probabilities p and q, so its entropy is by definition −(p log p+ q log q).
The entropy of the sequence is thus

S = −10(p log p+ q log q).

4.6 Maximum entropy principle. The maximum entropy principle describes the probability mea-
sures that have maximum relative entropy w.r.t some reference measure under certain con-
straints – namely, with the integrals of certain (arbitrary) functions being pre-given:

Theorem 1 (Maximum entropy principle) Let (Ω,F , ν) be a (not necessarily probability)
measure space. Suppose that X1, . . . , Xn are pre-given measurable (real-valued) functions on
(Ω,F) and m1, . . . , mn are pre-given real numbers. We consider those probability measures on
(Ω,F), w.r.t. which the integrals of our pre-given functions are exactly the pre-given numbers:

P(X,m) :=

{

µ probability measure on (Ω,F) :

∫

Ω

Xi dµ = mi for i = 1, . . . , n

}

.

Suppose that we can choose t1, . . . , tn ∈ R with the following properties:

• Zt :=
∫

Ω
e−

∑n
i=1 tiXi(ω) dν(ω) < ∞,

• the probability measure µt on (Ω,F) which is absolutely continuous w.r.t. ν, with density
ρt(ω) := 1

Zt
e−

∑n
i=1 tiXi(ω) satisfies µt ∈ P(X,m). Then µt is the (unique) probability

measure in P(X,m) which has maximal entropy w.r.t ν, and

S(µt; ν) =
n
∑

i=1

timi + logZt.

Use this theorem to find (the distribution of) the random variable X with maximum entropy
(if it exist)

(a) w.r.t. Lebesgue measure on R, under the constraint EX = m,

(b) w.r.t. Lebesgue measure on R
+, under the constraint EX = m,

(c) (homework) w.r.t. Lebesgue measure on R, under the constraints EX = m, VarX = v,

(d) (homework) w.r.t. the counting measure on N, under the constraint EX = m.

Solution:

(a) Doesn’t exist (discussed in class).

(b) Exponential distribution with ecpectation m (or parameter 1
m
) (discussed in class).

(c) For v < 0 the exercise makes no sense. For v = 0 the only probability distribution
satisfying the constraints is the Dirac measure concentrated on m, so this is also the
distribution with maximum entropy (although the entropy is −∞). From now on we
suppose v > 0.

Use the maximum entropy principle with (Ω,F , ν) = (R,B,Leb), n = 2, X1(x) = x,
m1 = m, X2(x) = x2 and m2 = v + m2. Then the two constaints ensure exactly that
the expectation is m and the variance is v. The theorem ensures that if a probability
density of the form f(x) = const e−(t1x+t2x2) exists with expectation m and second moment
v+m2, then it is the density of the unique probability distribution with maximum entropy
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satisfying the constraints. But yes, of course, a Gaussian density is exactly of this form,
and will satisfy the contraints exactly if it has parameters m and v, so

f(x) =
1√
2πv

e−
(x−m)2

2v

will do.

(d) First notice that the density w.r.t. the counting measure is nothing else than the discrete
probability distribution for discrete random variables. The solution depends slightly on
whether we mean N = {1, 2, . . . } or N = {0, 1, 2, . . .}, but don’t worry about that first.
Use the maximum entropy principle with (Ω,F , ν) = (N, 2N, χ) (with χ denoting the
counting measure), n = 1, X1(n) = n and m1 = m. Then the constaint ensures exactly
that the expectation is m. The theorem ensures that if a probability sequence of the
form pn = const e−t1n exists with expectation m, then it is the unique discrete probability
distribution with maximum entropy satisfying the constraint. But yes, of course, the
geometrical distribution is exactly of this form, and will satisfy the constraint if we choose
the parameter properly:

• With the convention N = {1, 2, . . . }, we set pn = (1 − p)pn−1 for n = 1, 2, . . . . This
leads to the expectation being 1

p
, so we have to choose p = 1

m
.

• With the convention N = {0, 1, 2, . . .}, we set pn = (1− p)pn for n = 0, 1, 2, . . . . This
leads to the expectation being 1

p
− 1, so we have to choose p = 1

m+1
.

Note that the question makes no sense if m < 1 (or m < 0, depending on the convention
on N). For e.g. m = 1 and N = {1, 2, . . . }, the only prob. distribution satisfying the
constraint is the Dirac measure concentrated on 1, so it is also the prob. distribution with
maximum entropy (although the entropy is 0).

Remark: The above geometrical distribution is often called pessimistic for N = {1, 2, . . . }
and optimistic for N = {0, 1, 2, . . .}. Guess why.

4.7 Microcanonical description of the free gas. Consider N identical particles of mass m in a box
Λ ⊂ R

3 (with volume V ), with the Hamiltonian

H(q, p) =

N
∑

i=1

~pi
2

2m

(the particles are non-interacting). Fix the total energy to be E.

(a) Describe the microcanonical distribution µmicr = µN,V,E.

(b) Calculate the microcanonical partition function Zmicr = Z(N, V, E). (Use the result of
Exercise 1.)

(c) Calculate the entropy S(N, V, E) of µmicr (relative to the “natural reference measure”,
which is the conditional measure of the Lebesgue measure (of the phase space) on the
{H = E} surface).

(d) Set E = Nu, V = Nv with u, v fixed constants, so S(N, V, E) becomes Su,v(N). How
does Su,v(N) scale with N? Use the Stirling formulas

Γ(x) =

√

2π

x

(x

e

)x

(1 + o(1)) , n! =
√
2πn

(n

e

)n

(1 + o(1)).

Have you not forgotten to factorize the phase space due to the indistinguishability of the
particles?
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Solution:

(a) Let ∼ denote the equivalence relation on ΛN which identifies sequences that can be ob-
tained from each other by permutation. The microcanonical distribution is the uniform
distribution on Λ̃N = ΛN/ ∼ times the uniform distribution on the moment sphere

S3N(
√
2mE) =

{

(~p1, ~p2, . . . , ~pN) :
N
∑

i=1

~pi
2 = 2mE

}

⊂ R
3N .

For that we didn’t need to know the “volume” of this set w.r.t. the reference measure: it
cancels out anyway with the normalization.

(b) The partition function Zmicr = Z(N, V, E) is the volume of Λ̃N×S3N (
√
2mE) (which is the

{H = E} surface) w.r.t. the reference measure, which is the (non-normalized) restriction
of the Liouville measure to this set. We know that this reference measure has density

1
|∇H| w.r.t. LebΛ̃N

⊗ LebS3N (
√
2mE), where LebS3N (

√
2mE) is just a notation for the surface

measure on the sphere. The gradient in the formula for the density has zero configurational
component, and the velocity (more precisely, moment) component is radial, with length
1
2m

2r if r denotes the distance from the origin (because d
dr
r2 = 2r). So

1

|∇H| =
2m

2
√

∑

i ~pi
2
=

2m

2
√
2mH

=

√

m

2H
.

We happily see that the density is constant on the {H = E} set and the value is
√

m
2E

.
(The answer to part (a) is actually only verified now.) Now we can calculate

Z(N, V, E) =

∫

Λ̃N×S3N (
√
2mE)

√

m

2E
d(LebΛ̃N

⊗ LebS3N (
√
2mE))

=

√

m

2E
LebΛ̃N

(Λ̃N)LebS3N (
√
2mE)(S3N(

√
2mE))

=

√

m

2E

Leb(Λ)N

N !
s3N (

√
2mE) =

√

m

2E

V N

N !
s3N (

√
2mE)

with sn(r) =
2πn/2

Γ(n
2
)
rn−1 from Exercise 1. Putting this together, we get

Z(N, V, E) =

√

m

2E

V N

N !

2π3N/2

Γ(3N
2
)
(2mE)

3N−1
2 =

V N

EN !Γ(3N
2
)
(2πmE)

3N
2 .

(c) The entropy of the uniform distribution (w.r.t. the reference measure) is alway the loga-
rithm of the volume:

S = −
∫

1

Z
log

1

Z
dµref = − 1

Z
log

1

Z
· Z = logZ,

so

S(N, V, E) = logZ(N, V, E) = N log V +
3N

2
log(2πmE)− log(EN !Γ(

3N

2
)).
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(d) Setting E = Nu and V = Nv we get

Su,v(N) = N log v +
3N

2
log(2πmu)− log u+ log

NNN
3N
2

NN !Γ(3N
2
)

In the argument of the last logarithm we use the Stirling formulas to get

NNN
3N
2

NN !Γ(3N
2
)
=

NNN
3N
2

N
√
2πN

(

N
e

)N
√

4π
3N

(

3N
2e

)
3N
2

(1 + o(1)) =

√

3

2

1

2π

1

N
eN
(

2e

3

)
3N
2

(1 + o(1)).

Writing this back,

Su,v(N) = N

[

log
(

v(mu)3/2
)

+
3

2
log

4π

3
+

5

2

]

− logN +

[

log

(

√

3

2

1

2π

)

− log u

]

+ o(1).

The essence of this is that

Su,v(N)

N

N→∞−−−→ log
(

v(mu)3/2
)

+
3

2
log

4π

3
+

5

2
.

If I had forgotten to factorize the phase space due to the indistinguishability of the parti-
cles, then the partition sum Z(N, V, E) would have an extra N ! factor. As a consequence,
the leading term in Su,v(N) would be of order N logN coming from this factorial, and
Su,v(N)

N
would not converge.

(Remark: The argument v(mu)3/2 of the logarithm in the limiting entropy is not unitless,
so the logarithm depends on the choice of units. When calculating thermodynamic quan-
tities as derivatives of the entropy, this uncertainty only effects the value of the chemical
potential, up to an additive constant. So the “Physics of the system” is not affected.)
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