
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 5 – due on 25.05.2012 – and exercises for the class on 18.05.2012

5.1 Grand canonical reference measure and identical particles. In the grand canonical description
of a particle system in the container Λ ⊂ R

d, we “try to” use the phase space

ΩΛ := ∪̇n≥0Ω
Λ
n ,

where ΩΛ
n is the phase space of an n-particle system, so

ΩΛ
n = (λ× R

d)n.

We “try to” equip this phase space with the reference measure

λΛ =
∑

n≥0

λΩΛ
n
,

where λΩΛ
n
is the Lebesgue measure on ΩΛ

n , that is λΩΛ
n
= (λΛ ⊗ λRd)⊗n. Now the Liouville

theorem ensures that this measure is invariant under any Hamiltonian dynamics.

(a) Show that the choice of the phase space is consistent in the sense that if Λ = Λ1∪̇Λ2, then
ΩΛ = ΩΛ1 × ΩΛ2 (with suitable natural identifications).

(b) However, show that the choice of λΛ is inconsistent: λΛ 6= λΛ1 ⊗ λΛ2 .

(c) Notice that in our choice of the measure we have some “freedom”: If we want the Liouville
theorem to ensure that the measure is invariant, then any measure of the form

λΛ =
∑

n≥0

cnλΩΛ
n

will do, with 0 < cn ∈ R. How should we choose the sequence cn, if we want to ensure
also that λΛ = λΛ1 ⊗ λΛ2?

(d) What has this got to do with indistinguishability of the particles?

5.2 Canonical entropy and patrition function. The canonical measures µΛ,β,N describing a Hamil-
tonian particle system (with Hamiltonian H) of N particles in the container Λ ⊂ R

d are
probability measures on the phase space ΩΛ

N which are absolutely continuous w.r.t. λΩΛ

N
(see

footnote 1), and have density

ρΛ,β,N(x) =
1

Z(Λ, β, N)
e−βH(x).

See the first exercise for notation. β is a parameter and Z(Λ, β, N) is the suitable nor-
malizing factor called the “partition function”. The canonical entropy Scan is defined as the
relative entropy

Scan(Λ, β, N) = H(µΛ,β,N ;λΩΛ

N
),

where H stands for relative entropy (not to be mixed with the Hamiltonian H).

1If we want to get “correct dependence on N”, we better use cNλΩΛ

N

= 1

N !
λΩΛ

N

as the reference measure, as we

learned from Exercise 5.1 and 4.7
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(a) Let E denote the expectation of H w.r.t. µΛ,β,N . Express S
can in terms of β, E and Z

i. using the definition of relative entropy,

ii. using the maximum entropy principle.

(b) What is the physical meaning of logZ?

5.3 (homework) Grand canonical entropy and patrition function. The grand canonical measures
µΛ,β,β′ describing a Hamiltonian particle system (with Hamiltonian H) in the container Λ ⊂ R

d

are probability measures on the phase space ΩΛ which are absolutely continuous w.r.t. λΛ, and
have density

ρΛ,β,β′(x) =
1

Z(Λ, β, β ′)
e−βH(x)−β′N(x).

See the first exercise for notation. Here N denotes the particle counting function N :
ΩΛ → N, N(x) = n if x ∈ ΩΛ

n . β and β ′ are parameters and Z(Λ, β, β ′) is the suitable
normalizing factor called the “partition function”. The grand canonical entropy Sgr is defined
as the relative entropy

Sgr(Λ, β, β ′) = H(µΛ,β,β′;λΛ),

where H again stands for relative entropy (not to be mixed with the Hamiltonian H).

(a) Let E denote the expectation of H and N̄ denote the expectation of N w.r.t. µΛ,β,β′.
Express Sgr in terms of β, E, β ′, N̄ and Z

i. using the definition of relative entropy,

ii. using the maximum entropy principle.

(b) What is the physical meaning of logZ?

Solution:

(a) i. For transparency, we omit the non-important arguments of the functions. By defini-
tion,

Sgr(Λ, β, β ′) = H(µΛ,β,β′;λΛ) = −

∫

ΩΛ

ρ log ρ dλΛ.

Of this, − log ρ(x) = logZ + βH(x) + β ′N(x), so

Sgr(Λ, β, β ′) = logZ

∫

ΩΛ

ρ dλΛ + β

∫

ΩΛ

Hρ dλΛ + β ′

∫

ΩΛ

Nρ dλΛ =

= logZ

∫

ΩΛ

1 dµ+ β

∫

ΩΛ

H(x) dµ(x) + β ′

∫

ΩΛ

N(x) dµ(x) =

= logZ + βE + β ′N̄ .

ii. We use the notation of Exercise 4.6. We apply the maximum entropy principle with
Ω = ΩΛ, ν = λΛ, n = 2, X1 = H, X2 = N , m1 = E, m2 = N̄ , t1 = β and
t2 = β ′. With this substitution, the theorem ensures exactly that our grand canonical
measure is the measrure on ΩΛ which has maximum relative entropy w.r.t. λΛ, under
the constraints EµH = E and EµN = N̄ . The final statement of the theorem ensures
that the relative entropy is

S = βE + β ′N̄ + logZ.
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(b) In thermodynamics, the “grand free energy” or “free entalpy” is defined as

G = E − TS − κN̄

where T is the temperature and κ is the chemical potential. (The chemical potential is
normally denoted by µ, but I would like to avoid confusion.) With our notation, β = 1

T

and β ′ = −βκ, so G = E − S
β
+ β′

β
N̄ = − 1

β
logZ, so the physical meaning of logZ is

logZ = −βG = −
G

T
.

5.4 (homework) Canonical description of the free gas. Consider the free gas with the Hamiltonian
given in Exercise 4.7.

(a) Describe the canonical distribution.

(b) Calculate the canonical partition function. Keep the footnote in mind.

(c) Calculate the canonical entropy.

(d) Set V = Nv where V is the volume of Λ, so Scan(Λ, β, N) becomes Scan
β,v (N). How does

Scan
β,v (N) scale with N? Compare with the result of Exercise 4.7.

Solution:

(a) According to the canonical distribution, the configurational positions of the n particles
are (mutually) independent and identically distributed on Λ (apart from the identification
of permutations due to the indistinguishability of the particles). The d ·N = 3N moment
components are also mutually independent of each other and the configurational positions,
and have identical Gaussian distribution with expectation 0 and variance m

β
.

(b) We set d = dim(Λ) = 3.

Z(Λ, β, N) =
1

N !

∫

ΛN×(R3)N

e−
∑N

i=1

β

2m
~p2i d3Nq d3Np =

1

N !
V N

(
∫ ∞

−∞

e−
β

2m
p2 dp

)3N

=

=
V N

N !

(

2πm

β

)3N/2

.

(c) From Exercise 5.2 we know that Scan(V, β,N) = βE + logZ(V, β,N) where E is the
expectation of the energyH with respect to the canonical distribution. E can be calculated
in many different ways. Maybe the the easiest is to read it out from the description in
point (a):

E =
1

2m

N
∑

i=1

∑

α∈{x,y,z}

Ecanp
2
iα =

3N

2m
Var(p1x) =

3N

2m

m

β
=

3N

2β
,

so

Scan(V, β,N) =
3N

2
+N log V − logN ! +

3N

2
log

2πm

β
.

(d) From the Stirling formula logN ! = N logN −N +O(logN), so

Scan(V, β,N) =
3N

2
+N log V −N logN +N +

3N

2
log

2πm

β
+O(logN),
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and

Scan
β,v (N) = N

(

5

2
+ log

V

N
+

3

2
log

2πm

β

)

+O(logN) =

= N

(

5

2
+ log v +

3

2
log

2πm

β

)

+O(logN).

In particular,

lim
N→∞

Scan
β,v (N)

N
=

5

2
+ log v +

3

2
log

2πm

β
.

This is in perfect agreement with the result of Exercise 4.7 if we substitute u – which
denotes the (deterministic) energy per particle in that exercise – with E

N
= 3

2β
, which is

the (expectation of the) same quantity here.

5.5 Grand canonical description of the free gas. Consider the free gas with the Hamiltonian given
in Exercise 4.7.

(a) Describe the grand canonical distribution.

(b) Calculate the grand canonical partition function. Keep the footnote in mind.

(c) Calculate the grand canonical entropy.

(d) Let V be the volume of Λ. How does Sgr(V, β, β ′) scale with V ? Compare with the result
of Exercise 4.7. and the previous exercise.

5.6 (homework) Free gas with several types of particles. Consider a container which is devided
into k parts, separated by thin walls. Each part has volume Vk and contains Nk identical
particles of a free gas, which, however, differ from the particles in other compartments. The
system is in equilibrium as much as it can be: exchange of energy is allowed. Now we remove
the walls, and wait for equilibrium to be reached again. How much does the entropy change?

Solution 1: using the strict definition, avoiding unnecessary calculations. Before the
solution, one is welcome to choose between the microcanonical and the canonical description
of the free gas. Both approaches lead to a correct solution, and the result will be the same.
The canonical description may be a little easier from a conceptual point of view.

The question is only about the change in the entropy, so an explicit calculation of the entropy
is not needed – it is enough to understand the V -dependence. With that in mind, there is no
serious difference between the microcanonical and the canonical description:

• In the microcanonical description we are interested in the Vi-dependence of

S(V1, V2, . . . , Vk, N1, N2, . . . , Nk, E)

while E and the Ni are kept fixed.

• In the canonical description we are interested in the Vi-dependence of

S(V1, V2, . . . , Vk, N1, N2, . . . , Nk, β)

while β and the Ni are kept fixed.

In both cases, it’s enough to consider the change in the value of logZ:
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• In the microcanonical description S = logZ,

• In the canonical description S = βE + logZ = 3
2
(N1 + · · ·+Nk) + logZ, and the particle

numbers don’t change.

The partition function Z is an integral, over the phase space, of some “weight function”. The
domain of that integral (the phase space itself) is different in the microcanonical and the
canonical setting, and so is the function to integrate. However, in both settings, they have two
crucial properties:

• the phase space is a product of the configuration space and the velocity space,

• the weight function we are integrating does not depend on the configuration point. (Here
it is important that the particles are noninteracting, so the Hamiltonian doesn’t depend
on the configuration.)

As a result, in the integral Z, the volume of the configuration space appears as a factor multi-
plying the rest of the integral. But the configuration space is nothing else than the Cartesian
product of the domains into which the N = N1 + · · · + Nk particles are confined (apart from
some identification of the particles), so its volume is just the product of these N volumes (apart
from some normalizing factors coming from the idetification, which do not depend on the Vi).
Thus

• Zmicr(V1, V2, . . . , Vk, N1, N2, . . . , Nk, E) = V N1

1 V N2

2 . . . V
Nk

k · zmicr(N1, N2, . . . , Nk, E),

• Zcan(V1, V2, . . . , Vk, N1, N2, . . . , Nk, β) = V N1

1 V N2

2 . . . V
Nk

k · zcan(N1, N2, . . . , Nk, β).

In both cases, removing the walls means replacing every Vi with V := V1 + · · ·+ Vk, so

Safter − Sbefore = logZafter − logZbefore = log
Zafter

Zbefore
=

= log

(

(

V

V1

)N1

. . .

(

V

Vk

)Nk

)

=

k
∑

i=1

Ni log
V

Vi
.

Solution 2: using the canonical distribution, understanding what it is. If we use
the canonical measure to describe the free gas, then all the positions and velocities of all the
particles are completely (mutually) independent – see Exercise 5.4. (One only has to be careful
about non-distinguishability of the particles.) So, according to the canonical measure, the
k subsystems (containig Nk particles each) are mutually independent, i.e. they “don’t know
about each other”, even after the walls are removed. To be precise: the joint distribution is a
product measure, Z is just the product of the Zi-s of the subsystems, and S is exactly the sum
of the Si. So one can rigorously write in the canonical setting

∆S =
k
∑

i=1

∆Si,

where
∆Si = Scan(V,Ni, β)− Scan(Vi, Ni, β) = Ni log V −Ni log Vi

from Exercise 5.4. This gives

Safter − Sbefore =

k
∑

i=1

Ni log
V

Vi
.
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(Note that this argument does not work in the microcanonical setting : the “entropy of the
subsystems” doesn’t really make sense, since there is only one total energy E.)

Solution 3: canonical setting, by explicit calculation of the entropy. The calculation
of Exercise 5.4 can easily be repeated with k different kinds of particles, with particle numbers
Ni, masses mi and constrained to the domains Λi each. A possible overlap of these domains
plays no role, and the result is

S(V1, . . . , Vk, N1, . . . , Nk, β) =
k
∑

i=1

[

3Ni

2
+Ni log

(

Vi

(

2πmi

β

)d/2
)

− logNi!

]

.

So

Safter − Sbefore = S(V, . . . , V, N1, . . . , Nk, β)− S(V1, . . . , Vk, N1, . . . , Nk, β) =
k
∑

i=1

Ni log
V

Vi

.

Solution 4: microcanonical setting, by explicit calculation of the entropy. If all
masses are equal, the explicit calculation of the microcanonical entropy as done in the solution
of Exercise 4.7, can be repeated in the setting of several kinds of particles. If the masses are not
equal, the calculation is more difficult, since the constant energy surface is no longer a sphere
in the velocity space, and |∇H| is not constant. After overcoming that difficulty, we get

Zmicr(V1, . . . , Vk, N1, . . . , Nk, E) =
1

E

E3N/2

Γ(3N
2
)

k
∏

i=1

V Ni

i m
3Ni/2
i

Ni!
.

So

Safter − Sbefore = log
Zmicr(V, . . . , V, N1, . . . , Nk, E)

Zmicr(V1, . . . , Vk, N1, . . . , Nk, E)
=

k
∑

i=1

Ni log
V

Vi

.

5.7 Grand canonical description of the free gas and the Poisson process. Consider the grand canon-
ical ensamble of the free gas in a container Λ with parameters β, β ′.

(a) Let Λ1 ⊂ Λ. What is the distribution of the (random) number N1 of particles that are in
Λ1?

(b) Let Λ1 and Λ2 be two disjoint subsets of Λ. (That is, Λ1,Λ2 ⊂ Λ, Λ1 ∩ Λ2 = ∅.) Let Ni

denote the (random) number of particles in Λi (i = 1, 2). What is the joint distribution

of N1 and N2?
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