Mathematical Statistical Physics - LMU München, summer semester 2012
 Hartmut Ruhl, Imre Péter Tóth

Homework sheet 9 - due on 22.06.2012 - and exercises for the class on 15.06.2012

9.1 (homework) Canonical partition function and density of states. As you all know, the canonical ensamble (or canonical distribution) has the density $f_{\alpha, \beta}(\omega)=\frac{1}{Z(\alpha, \beta)} e^{-\beta H(\omega)}$ w.r.t. an approriate reference measure $\mu_{\text {ref }}$ on the phase space $\Omega=\{\omega\}$. Here β is the inverse temperature, and α denotes all the possibles other parameters (e.g. volume, particle number, etc.) which influence the shape of $\Omega, \mu_{\text {ref }}$ and the Hamiltonian $H: \Omega \rightarrow \mathbb{R}$. The normalizing factor $Z(\alpha, \beta)$ is called the partition function (we suppose that it is finite).

Denote by μ_{E} the push-forward of $\mu_{r e f}$ from Ω to \mathbb{R} by H - which means that

$$
\mu_{E}(B):=\mu_{r e f}(\{\omega: H(\omega) \in B\})
$$

for any Borel $B \subset \mathbb{R}$. This could vaguely be called the "distribution of H w.r.t. $\mu_{r e f}$ ". (Only vaguely, because $\mu_{\text {ref }}$ is usually not a probability measure, so $H: \Omega \rightarrow \mathbb{R}$ cannot be called a random variable if we consider Ω equipped with $\mu_{\text {ref }}$.) Suppose (for simplicity only) that this μ_{E} is absolutely continuous w.r.t. Lebesgue measure on \mathbb{R}, and denote its density by $\rho=\rho_{\alpha}(E)$. This ρ_{α} can be called the density of states.
(a) When Ω is equipped with the canonical measure, the energy is a random variable. Show that under the above condition (that μ_{E} is absolutely continuous w.r.t. Lebesgue measure) this random variable is absolutely continuous (w.r.t Lebesgue measure), and calculate the density in terms of ρ, Z and β.
(b) Express $Z(\alpha, \beta)$ with the help of β and ρ_{α} (or β and μ_{E}, if you want to be more general), and be happy that this is possible.

Solution:

(a) Let $\mu_{c a n}^{\alpha, \beta}$ denote the canonical measure and let $\nu_{\alpha, \beta}^{E}$ denote the distribution of H w.r.t. $\mu_{c a n}^{\alpha, \beta}$, which is thus the push-forward of $\mu_{c a n}^{\alpha, \beta}$ by H (from ω to \mathbb{R}). So we can calculte it using the definition of the push-forward, the definition of the canonical measure and the theorem of integration by substitution: for any Borel $B \subset \mathbb{R}$

$$
\begin{aligned}
\nu_{\alpha, \beta}^{E}(B) & =\mu_{c a n}^{\alpha, \beta}(\{\omega: H(\omega) \in B\})=\int_{H^{-1}(B)} \mathrm{d} \mu_{c a n}^{\alpha, \beta}= \\
& =\int_{H^{-1}(B)} \frac{1}{Z(\alpha, \beta)} e^{-\beta H(\omega)} \mathrm{d} \mu_{r e f}(\omega) \stackrel{E=H(\omega)}{=} \int_{B} \frac{1}{Z(\alpha, \beta)} e^{-\beta E} \mathrm{~d} \mu_{E}(E),
\end{aligned}
$$

so the general expression for $\nu_{\alpha, \beta}^{E}$ is

$$
\mathrm{d} \nu_{\alpha, \beta}^{E}(E)=\frac{1}{Z(\alpha, \beta)} e^{-\beta E} \mathrm{~d} \mu_{E}(E) .
$$

So if μ_{E} is absolutely continuous w.r.t. Lebesgue measure on \mathbb{R} with density ρ_{α}, then $\nu_{\alpha, \beta}^{E}$ also has a density

$$
g_{\alpha, \beta}(E)=\frac{1}{Z(\alpha, \beta)} e^{-\beta E} \rho_{\alpha}(E) .
$$

(b) From the previous, the normalizing factor has to be, in the general case,

$$
Z(\alpha, \beta)=\int_{\mathbb{R}} e^{\beta E} \mathrm{~d} \mu_{E}(E)
$$

In the special case when μ_{E} is absolutely continuous,

$$
Z(\alpha, \beta)=\int_{-\infty}^{\infty} e^{\beta E} \rho_{\alpha}(E) \mathrm{d} E
$$

9.2 (homework) Energy fluctuations for the free gas. Consider the free gas in the canonical ensamble, and keep the density fixed by setting $V=N v$ with $v=$ const. Also fix the temperature by setting $\beta=$ const. Now for every N the energy density H / V is a random variable.
(a) Calculate the expectation and the variance of this H / V as a function of N. What can we say about the weak convergence of H / V in the limit $N \rightarrow \infty$?
(b) Set $N=10^{23}$. Estimate the probability that H / V deviates from its expectation with at least 0.000001%.

Solution1: brute force calculation, without understanding what the partition function is good for - but understanding what the canonical distribution is.

(a) $H=\frac{1}{2 m} \sum_{i=1}^{3 N} p_{i}^{2}$, where each p_{i} is one of the $3 N$ moment vector components. In the canonical ensamble, these p_{i} are random variables, whose distribution is known exactly: they are i.i.d. and all of them are Gaussian with mean 0 and variance $\frac{m}{\beta}$. This information is enough to calcualte the expectation and variance of H : linearity of the expectation implies that

$$
\mathbb{E} H=\frac{1}{2 m} 3 N \mathbb{E}\left(p_{1}^{2}\right)
$$

and inpedendence implies that

$$
\operatorname{Var} H=\frac{1}{(2 m)^{2}} 3 N \operatorname{Var}\left(p_{1}^{2}\right)
$$

$\mathbb{E}\left(p_{1}^{2}\right)$ and $\operatorname{Var}\left(p_{1}^{2}\right)$ can be calculated using only the fact that $p_{1} \sim \mathcal{N}\left(0, \frac{m}{\beta}\right)$:

$$
\mathbb{E}\left(p_{1}^{2}\right)=\operatorname{Var}_{i}=\frac{m}{\beta}
$$

and
so

$$
\mathbb{E}\left(\left(p_{1}^{2}\right)^{2}\right)=\mathbb{E}\left(p_{1}^{4}\right)=\int_{-\infty}^{\infty} x^{4} \frac{1}{\sqrt{2 \pi \frac{m}{\beta}}} e^{-\frac{x^{2}}{2 \frac{m}{\beta}}} \mathrm{~d} x=\cdots=\frac{3 m^{2}}{\beta^{2}}
$$

$$
\operatorname{Var}\left(p_{1}^{2}\right)=\mathbb{E}\left(\left(p_{1}^{2}\right)^{2}\right)-\left(\mathbb{E}\left(p_{1}^{2}\right)\right)^{2}=\frac{2 m^{2}}{\beta^{2}}
$$

So

$$
\mathbb{E} H=\frac{3 N}{2 \beta} \quad, \quad \operatorname{Var} H=\frac{3 N}{2 \beta^{2}}
$$

Now using $V=N v$ we get

$$
\mathbb{E} \frac{H}{V}=\frac{3}{2 v \beta} \quad, \quad \operatorname{Var} \frac{H}{V}=\frac{3}{2 v^{2} \beta^{2}} \frac{1}{N} .
$$

So, as a function of N, the expectation is constant and the variance goes to zero, which ensures that $\frac{H}{V}$ converges to $\frac{3}{2 v \beta}$ weakly as $N \rightarrow \infty$.
(b) i. Easiest, very rough estimate using the Markov (or the Chebyshev's) inequality: Use the notation $\delta=10^{-8}$.

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{H}{V}-\mathbb{E}\left(\frac{H}{V}\right)\right|>\delta \mathbb{E}\left(\frac{H}{V}\right)\right) & =\mathbb{P}\left(\left(\frac{H}{V}-\mathbb{E}\left(\frac{H}{V}\right)\right)^{2}>\delta^{2} \mathbb{E}^{2}\left(\frac{H}{V}\right)\right) \leq \\
& \leq \frac{\operatorname{Var}\left(\frac{H}{V}\right)}{\delta^{2} \mathbb{E}^{2}\left(\frac{H}{V}\right)}=\frac{2 \delta^{2}}{3 N}=6.666 \cdot 10^{-8}
\end{aligned}
$$

ii. Much better estimate using large deviations: If we write H in the form $H=\sum_{i=1}^{3 N} X_{i}$ where $X_{i}=\frac{1}{2 m} p_{i}^{2}$, we can give a large deviations estimate for

$$
\mathbb{P}\left(\left|\frac{H}{V}-\mathbb{E}\left(\frac{H}{V}\right)\right|>\delta \mathbb{E}\left(\frac{H}{V}\right)\right)=\mathbb{P}\left(\left|\frac{H}{3 N}-\mathbb{E} X\right|>\delta \mathbb{E} X\right)
$$

by calcualting the Cramer rate function for $X:=X_{1}$. For that, it's enough to know the distribution of $p=p_{1}$ and the definition of X : the moment generating function is

$$
Z(\lambda)=\mathbb{E}\left(e^{\lambda X}\right)=\mathbb{E}\left(e^{\frac{\lambda}{2 m} p^{2}}\right)=\int_{-\infty}^{\infty} e^{\frac{\lambda}{2 m} x^{2}} \frac{1}{\sqrt{2 \pi \frac{m}{\beta}}} e^{-\frac{x^{2}}{2 \frac{m}{\beta}}} \mathrm{~d} x=\cdots=\sqrt{\frac{\beta}{\beta-\lambda}}
$$

From that we get

$$
\hat{I}(\lambda)=\log Z(\lambda)=\frac{1}{2} \log \beta-\frac{1}{2} \log (\beta-\lambda),
$$

so $\mathbb{E} X=\hat{I}^{\prime}(0)=\frac{1}{2 \beta}, x=\hat{I}^{\prime}\left(\lambda^{*}\right)$ gives $\lambda^{*}(x)=\beta-\frac{1}{2 x}$, so

$$
I(x)=x \lambda^{*}(x)-\hat{I}\left(\lambda^{*}\right)=x \beta-\frac{1}{2}-\frac{1}{2} \log (2 \beta x)
$$

and the Cramer theorem gives

$$
\begin{aligned}
& \mathbb{P}\left(\frac{H}{3 N}<(1-\delta) \frac{1}{2 \beta}\right) \lesssim e^{-3 N I\left(\frac{1-\delta}{2 \beta}\right)}, \\
& \mathbb{P}\left(\frac{H}{3 N}>(1+\delta) \frac{1}{2 \beta}\right) \lesssim e^{-3 N I\left(\frac{1+\delta}{2 \beta}\right)} .
\end{aligned}
$$

The essential part is

$$
\begin{aligned}
& I\left(\frac{1-\delta}{2 \beta}\right)=\frac{1}{2}(-\delta-\log (1-\delta)) \approx \frac{\delta^{2}}{4}, \\
& I\left(\frac{1+\delta}{2 \beta}\right)=\frac{1}{2}(\delta-\log (1+\delta)) \approx \frac{\delta^{2}}{4},
\end{aligned}
$$

and

$$
\mathbb{P}\left(\left|\frac{H}{3 N}-\mathbb{E} X\right|>\delta \mathbb{E} X\right) \lesssim 2 e^{-\frac{3 N \delta^{2}}{4}}=2 e^{-7.5 \cdot 10^{6}},
$$

which has roughly 3257000 zeroes before the first significant digit.
Solution2: Short and easy calculation, making use of the partition function.
(a) In Exercise 5.4 we calculated the canonical partition function

$$
Z(N, V, \beta)=\frac{V^{N}}{N!}\left(\frac{2 \pi m}{\beta}\right)^{\frac{3 N}{2}}, \text { so } \log Z(N, V, \beta)=\operatorname{const}(N, V)-\frac{3 N}{2} \log \beta
$$

This implies

$$
\mathbb{E} H=-\frac{\partial}{\partial \beta} \log Z(N, V, \beta)=\frac{3 N}{2 \beta} \text { and } \operatorname{Var} H=\frac{\partial^{2}}{\partial \beta^{2}} \log Z(N, V, \beta)=\frac{3 N}{2 \beta^{2}} .
$$

The rest is the same as in the first solution.
(b) i. Easiest, very rough estimate using the Markov (or Chebyshev's) inequality: same as in the first solution.
ii. Much better estimate using large deviations: The great thing in the definition of the partition function is exactly that $Z(N, V, \beta)$, as a function of β, is essentially the moment generating function of the random variable H. To be precise,

$$
\begin{aligned}
\mathbb{E}_{\mu_{c a n}}\left(e^{\lambda H}\right) & =\int_{\Omega} e^{\lambda H(\omega)} \mathrm{d} \mu_{c a n}(\omega)=\int_{\Omega} e^{\lambda H(\omega)} \frac{1}{Z(N, V, \beta)} e^{-\beta H(\omega)} \mathrm{d} \mu_{r e f}(\omega)= \\
& =\frac{1}{Z(N, V, \beta)} \int_{\Omega} e^{-(\beta-\lambda) H(\omega)} \mathrm{d} \mu_{r e f}(\omega)=\frac{1}{Z(N, V, \beta)} Z(N, V, \beta-\lambda) .
\end{aligned}
$$

So, having already calculated the partition function, we get the moment generating function for free:

$$
\mathbb{E}\left(e^{\lambda H}\right)=\left(\frac{\beta}{\beta-\lambda}\right)^{\frac{3 N}{2}}
$$

To avoid confusion, let's denote the logarithmic moment generating function with \hat{J} :

$$
\hat{J}(\lambda):=\log \mathbb{E}\left(e^{\lambda H}\right)=\frac{3 N}{2}(\log \beta-\log (\beta-\lambda)) .
$$

(Note that this \hat{J} is not the same as the \hat{I} in the first solution: \hat{I} denoted the logarithmic moment generating function of X, while \hat{J} is the logarithmic moment generating function of H. Of course, $\hat{J}(\lambda)=3 N \hat{I}(\lambda)$.)
We will simply estimate $\mathbb{P}(|H-\mathbb{E} H| \geq \delta \mathbb{E} H)$ using the large deviations theorem with $n=1$ - that is, for a sum with the single term H. For the rate function we get

$$
J(x)=x \beta-\frac{3 N}{2}-\frac{3 N}{2} \log \frac{2 \beta x}{3 N} .
$$

(Note that this is related naturally to the rate function of the previous solution: $J(x)=3 N I\left(\frac{x}{3 N}\right)$.)
The Cramer theorem gives

$$
\begin{aligned}
& \mathbb{P}(H<(1-\delta) \mathbb{E} H) \lesssim e^{-J\left((1-\delta) \frac{3 N}{2 \beta}\right)}=e^{-\frac{3 N}{2}(-\delta-\log (1-\delta))} \approx e^{-\frac{3 N \delta^{2}}{4}}, \\
& \mathbb{P}(H>(1+\delta) \mathbb{E} H) \lesssim e^{\left.-J\left((1+\delta) \frac{3 N}{2 \beta}\right)\right)}=e^{-\frac{3 N}{2}(\delta-\log (1+\delta))} \approx e^{-\frac{3 N \delta^{2}}{4}},
\end{aligned}
$$

so

$$
\mathbb{P}(|H-\mathbb{E} H| \geq \delta \mathbb{E} H) \lesssim 2 e^{-\frac{3 N \delta^{2}}{4}}=2 e^{-7.5 \cdot 10^{6}}
$$

small.
9.3 Density fluctuations for the free gas. Consider the free gas in the grand canonical ensamble. Keeping β and β^{\prime} fixed, the density N / V is a random variable parametrized by V.
(a) Calculate the expectation and the variance of this N / V as a function of V. What can we say about the weak convergence of N / V in the limit $V \rightarrow \infty$?
(b) Set the parameters so that $\mathbb{E} N=10^{23}$. Estimate the probability that N / V deviates from its expectation with at least 0.000001%.
9.4 Tempered and stable pair interactions. Let $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R} \cup\{\infty\}$ be a pair interaction potential which satisfies the following:
(a) Φ is bounded from below,
(b) There is an $R_{1}>0$ such that $\Phi(r)=\infty$ for all $r \leq R_{1}$,
(c) There is an $R_{2}<\infty$ such that $\Phi(r)=0$ for all $r \geq R_{2}$.

Show that Φ is tempered and stable.
9.5 Tempered and stable pair interactions II. Let $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R} \cup\{\infty\}$ be a pair interaction potential which satisfies the following:
(a) Φ is bounded from below,
(b) There is an $R_{1}>0$ such that $\Phi(r)=\infty$ for all $r \leq R_{1}$,
(c) There is an $R_{2}<\infty$ such that $\Phi(r) \leq 0$ for all $r \geq R_{2}$,
(d) $\Phi(r) \rightarrow 0$ exponentially fast as $r \rightarrow \infty$.

Show that Φ is tempered and stable.
9.6 Basics of convex functions. If a and b are elements of a linear space V over \mathbb{R}, then their convex combinations are the elements $\alpha a+\beta b$ where $0 \leq \alpha \in \mathbb{R}, 0 \leq \beta \in \mathbb{R}$ and $\alpha+\beta=1$. A set $A \subset V$ is called convex if it contains every convex combination of its elements. For a convex $A \subset V$, the function $f: A \rightarrow \mathbb{R} \cup\{\infty\}$ is called convex if

$$
f(\alpha a+\beta b) \leq \alpha f(a)+\beta f(b)
$$

for any $a, b \in A, 0 \leq \alpha \in \mathbb{R}, 0 \leq \beta \in \mathbb{R}$ and $\alpha+\beta=1$. Show that convexity is a very strong regularity property by proving the following statements: Suppose $f: I \rightarrow \mathbb{R} \cup\{\infty\}$ is convex and finite on the open (but possibly infinite) interval $I \subset \mathbb{R}$. Then
(a) it is necessarily continuous,
(b) it has one-sided derivatives everywhere on I,
(c) These one-sided derivatives are monotonically non-decreasing,
(d) f is differentiable in all but at most countably many points.
9.7 Midpoint convexity. Let $I \subset \mathbb{R}$ be a (possibly infinite) interval. The function $f: I \rightarrow \mathbb{R} \cup\{\infty\}$ is called midpoint convex, if $f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}$ for every $a, b \in I$. Show that if $f: I \rightarrow \mathbb{R} \cup\{\infty\}$ is finite, midpoint convex and bounded on a subinterval $\emptyset \neq J \subset I$, then it is bounded on any bounded interval, (continuous) and convex.
9.8 (homework) Jensen's inequality. If a_{1}, \ldots, a_{n} are elements of a linear space V over \mathbb{R}, then their convex combinations are the elements $\sum_{i=1}^{n} \alpha_{i} a_{i}$ where $0 \leq \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $\sum_{i=1}^{n} \alpha_{i}=$ 1.
(a) Show that if $A \subset V$ is convex and $a_{1}, \ldots, a_{n} \in A$, then any convex combination $\sum_{i=1}^{n} \alpha_{i} a_{i}$ is also in A.
(b) Show that if $A \subset V$ is convex, $f: A \rightarrow \mathbb{R} \cup\{\infty\}$ is convex and $a_{1}, \ldots, a_{n} \in A, 0 \leq$ $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $\sum_{i=1}^{n} \alpha_{i}=1$, then

$$
f\left(\sum_{i=1}^{n} \alpha_{i} a_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(a_{i}\right)
$$

This is the simplest form of Jensen's inequality.
Solution: Very easy, by induction in n. For $n=1$ the statements are trivial identities, for $n=2$ they are the definitions of convexity (of A and of f, respectively). For $n \geq 3$ assume that the statements hold for $n-1$.
Set $\beta_{1}=\sum_{i=1}^{n-1} a_{i}$ and $\beta_{2}=a_{n}$, so $\beta_{1}, \beta_{2} \geq 0$ and $\beta_{1}+\beta_{2}=1$.
If $\beta_{1}=0$, the statements are trivial. If not, set $\gamma_{i}=\frac{\alpha_{i}}{\beta_{1}}$ for $i=1, \ldots, n-1$, so $\sum_{i=1}^{n-1} \gamma_{i}=1$. Set $P:=\sum_{i=1}^{n} a_{i}$ and $b_{1}:=\sum_{i=1}^{n-1} \gamma_{i} a_{i}$.
Now
(a) The inductive assumption implies that $b_{1} \in A$, so the convexity of A implies that $\beta_{1} b_{1}+$ $\beta_{2} a_{n} \in A$, but $\beta_{1} b_{1}+\beta_{2} a_{n}=P$.
(b) The convexity if f implies that $f(P)=f\left(\beta_{1} b_{1}+\beta_{2} a_{n}\right) \leq \beta_{1} f\left(b_{1}\right)+\beta_{2} f\left(a_{n}\right)$, and the inductive assumption implies that $f\left(b_{1}\right)=f\left(\sum_{i=1}^{n-1} \gamma_{i} a_{i}\right) \leq \sum_{i=1}^{n-1} \gamma_{i} f\left(a_{i}\right)$. Putting these together,

$$
f(P) \leq \beta_{1} \sum_{i=1}^{n-1} \gamma_{i} f\left(a_{i}\right)+\beta_{2} f\left(a_{n}\right)=\sum_{i=1}^{n} \alpha_{i} f\left(a_{i}\right) .
$$

