
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 9 – due on 22.06.2012 – and exercises for the class on 15.06.2012

9.1 (homework) Canonical partition function and density of states. As you all know, the canonical
ensamble (or canonical distribution) has the density fα,β(ω) =

1
Z(α,β)

e−βH(ω) w.r.t. an approriate

reference measure µref on the phase space Ω = {ω}. Here β is the inverse temperature, and α
denotes all the possibles other parameters (e.g. volume, particle number, etc.) which influence
the shape of Ω, µref and the Hamiltonian H : Ω → R. The normalizing factor Z(α, β) is called
the partition function (we suppose that it is finite).

Denote by µE the push-forward of µref from Ω to R by H – which means that

µE(B) := µref({ω : H(ω) ∈ B})

for any Borel B ⊂ R. This could vaguely be called the “distribution of H w.r.t. µref”. (Only
vaguely, because µref is usually not a probability measure, so H : Ω → R cannot be called a
random variable if we consider Ω equipped with µref .) Suppose (for simplicity only) that this
µE is absolutely continuous w.r.t. Lebesgue measure on R, and denote its density by ρ = ρα(E).
This ρα can be called the density of states.

(a) When Ω is equipped with the canonical measure, the energy is a random variable. Show
that under the above condition (that µE is absolutely continuous w.r.t. Lebesgue measure)
this random variable is absolutely continuous (w.r.t Lebesgue measure), and calculate the
density in terms of ρ, Z and β.

(b) Express Z(α, β) with the help of β and ρα (or β and µE, if you want to be more general),
and be happy that this is possible.

Solution:

(a) Let µα,β
can denote the canonical measure and let νE

α,β denote the distribution of H w.r.t.

µα,β
can, which is thus the push-forward of µα,β

can by H (from ω to R). So we can calculte it
using the definition of the push-forward, the definition of the canonical measure and the
theorem of integration by substitution: for any Borel B ⊂ R

νE
α,β(B) = µα,β

can({ω : H(ω) ∈ B}) =

∫

H−1(B)

dµα,β
can =

=

∫

H−1(B)

1

Z(α, β)
e−βH(ω) dµref(ω)

E=H(ω)
=

∫

B

1

Z(α, β)
e−βE dµE(E),

so the general expression for νE
α,β is

dνE
α,β(E) =

1

Z(α, β)
e−βE dµE(E).

So if µE is absolutely continuous w.r.t. Lebesgue measure on R with density ρα, then νE
α,β

also has a density

gα,β(E) =
1

Z(α, β)
e−βEρα(E).
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(b) From the previous, the normalizing factor has to be, in the general case,

Z(α, β) =

∫

R

eβE dµE(E).

In the special case when µE is absolutely continuous,

Z(α, β) =

∫

∞

−∞

eβEρα(E) dE.

9.2 (homework) Energy fluctuations for the free gas. Consider the free gas in the canonical en-
samble, and keep the density fixed by setting V = Nv with v = const. Also fix the temperature
by setting β = const. Now for every N the energy density H/V is a random variable.

(a) Calculate the expectation and the variance of this H/V as a function of N . What can we
say about the weak convergence of H/V in the limit N → ∞?

(b) Set N = 1023. Estimate the probability that H/V deviates from its expectation with at
least 0.000001%.

Solution1: brute force calculation, without understanding what the partition func-
tion is good for – but understanding what the canonical distribution is.

(a) H = 1
2m

∑3N
i=1 p

2
i , where each pi is one of the 3N moment vector components. In the

canonical ensamble, these pi are random variables, whose distribution is known exactly:
they are i.i.d. and all of them are Gaussian with mean 0 and variance m

β
. This information

is enough to calcualte the expectation and variance of H : linearity of the expectation
implies that

EH =
1

2m
3NE(p21),

and inpedendence implies that

VarH =
1

(2m)2
3NVar(p21).

E(p21) and Var(p21) can be calculated using only the fact that p1 ∼ N (0, m
β
):

E(p21) = Varpi =
m

β

and

E((p21)
2) = E(p41) =

∫

∞

−∞

x4 1
√

2πm
β

e
−

x2

2m
β dx = · · · =

3m2

β2
,

so

Var(p21) = E((p21)
2)− (E(p21))

2 =
2m2

β2
.

So

EH =
3N

2β
, VarH =

3N

2β2
.

Now using V = Nv we get

E
H

V
=

3

2vβ
, Var

H

V
=

3

2v2β2

1

N
.

So, as a function of N , the expectation is constant and the variance goes to zero, which
ensures that H

V
converges to 3

2vβ
weakly as N → ∞.
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(b) i. Easiest, very rough estimate using the Markov (or the Chebyshev’s) inequality: Use
the notation δ = 10−8.

P

(
∣

∣

∣

∣

H

V
− E

(

H

V

)
∣

∣

∣

∣

> δE

(

H

V

))

= P

(

(

H

V
− E

(

H

V

))2

> δ2E2

(

H

V

)

)

≤

≤
Var

(

H
V

)

δ2E2
(

H
V

) =
2δ2

3N
= 6.666 · 10−8.

ii. Much better estimate using large deviations: If we write H in the form H =
∑3N

i=1Xi

where Xi =
1
2m

p2i , we can give a large deviations estimate for

P

(
∣

∣

∣

∣

H

V
− E

(

H

V

)
∣

∣

∣

∣

> δE

(

H

V

))

= P

(
∣

∣

∣

∣

H

3N
− EX

∣

∣

∣

∣

> δEX

)

by calcualting the Cramer rate function for X := X1. For that, it’s enough to know
the distribution of p = p1 and the definition of X : the moment generating function is

Z(λ) = E(eλX) = E(e
λ
2m

p2) =

∫

∞

−∞

e
λ
2m

x2 1
√

2πm
β

e
−

x2

2m
β dx = · · · =

√

β

β − λ
.

From that we get

Î(λ) = logZ(λ) =
1

2
log β −

1

2
log(β − λ),

so EX = Î ′(0) = 1
2β
, x = Î ′(λ∗) gives λ∗(x) = β − 1

2x
, so

I(x) = xλ∗(x)− Î(λ∗) = xβ −
1

2
−

1

2
log(2βx)

and the Cramer theorem gives

P

(

H

3N
< (1− δ)

1

2β

)

/ e−3NI( 1−δ
2β

),

P

(

H

3N
> (1 + δ)

1

2β

)

/ e−3NI( 1+δ
2β

).

The essential part is

I(
1− δ

2β
) =

1

2
(−δ − log(1− δ)) ≈

δ2

4
,

I(
1 + δ

2β
) =

1

2
(δ − log(1 + δ)) ≈

δ2

4
,

and

P

(
∣

∣

∣

∣

H

3N
− EX

∣

∣

∣

∣

> δEX

)

/ 2e−
3Nδ2

4 = 2e−7.5·106 ,

which has roughly 3257000 zeroes before the first significant digit.

Solution2: Short and easy calculation, making use of the partition function.
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(a) In Exercise 5.4 we calculated the canonical partition function

Z(N, V, β) =
V N

N !

(

2πm

β

)
3N
2

, so logZ(N, V, β) = const(N, V )−
3N

2
log β.

This implies

EH = −
∂

∂β
logZ(N, V, β) =

3N

2β
and VarH =

∂2

∂β2
logZ(N, V, β) =

3N

2β2
.

The rest is the same as in the first solution.

(b) i. Easiest, very rough estimate using the Markov (or Chebyshev’s) inequality: same as
in the first solution.

ii. Much better estimate using large deviations: The great thing in the definition of the
partition function is exactly that Z(N, V, β), as a function of β, is essentially the
moment generating function of the random variable H . To be precise,

Eµcan
(eλH) =

∫

Ω

eλH(ω) dµcan(ω) =

∫

Ω

eλH(ω) 1

Z(N, V, β)
e−βH(ω) dµref(ω) =

=
1

Z(N, V, β)

∫

Ω

e−(β−λ)H(ω) dµref(ω) =
1

Z(N, V, β)
Z(N, V, β − λ).

So, having already calculated the partition function, we get the moment generating
function for free:

E(eλH) =

(

β

β − λ

)
3N
2

.

To avoid confusion, let’s denote the logarithmic moment generating function with Ĵ :

Ĵ(λ) := logE(eλH) =
3N

2
(log β − log(β − λ)).

(Note that this Ĵ is not the same as the Î in the first solution: Î denoted the logarith-
mic moment generating function of X , while Ĵ is the logarithmic moment generating
function of H . Of course, Ĵ(λ) = 3NÎ(λ).)
We will simply estimate P(|H−EH| ≥ δEH) using the large deviations theorem with
n = 1 – that is, for a sum with the single term H . For the rate function we get

J(x) = xβ −
3N

2
−

3N

2
log

2βx

3N
.

(Note that this is related naturally to the rate function of the previous solution:
J(x) = 3NI( x

3N
).)

The Cramer theorem gives

P(H < (1− δ)EH) / e−J((1−δ) 3N
2β ) = e−

3N
2

(−δ−log(1−δ)) ≈ e−
3Nδ2

4 ,

P(H > (1 + δ)EH) / e−J((1+δ) 3N
2β )) = e−

3N
2

(δ−log(1+δ)) ≈ e−
3Nδ2

4 ,

so

P(|H − EH| ≥ δEH) / 2e−
3Nδ2

4 = 2e−7.5·106 ,

small.
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9.3 Density fluctuations for the free gas. Consider the free gas in the grand canonical ensamble.
Keeping β and β ′ fixed, the density N/V is a random variable parametrized by V .

(a) Calculate the expectation and the variance of this N/V as a function of V . What can we
say about the weak convergence of N/V in the limit V → ∞?

(b) Set the parameters so that EN = 1023. Estimate the probability that N/V deviates from
its expectation with at least 0.000001%.

9.4 Tempered and stable pair interactions. Let Φ : R+ → R ∪ {∞} be a pair interaction potential
which satisfies the following:

(a) Φ is bounded from below,

(b) There is an R1 > 0 such that Φ(r) = ∞ for all r ≤ R1,

(c) There is an R2 < ∞ such that Φ(r) = 0 for all r ≥ R2.

Show that Φ is tempered and stable.

9.5 Tempered and stable pair interactions II. Let Φ : R+ → R∪{∞} be a pair interaction potential
which satisfies the following:

(a) Φ is bounded from below,

(b) There is an R1 > 0 such that Φ(r) = ∞ for all r ≤ R1,

(c) There is an R2 < ∞ such that Φ(r) ≤ 0 for all r ≥ R2,

(d) Φ(r) → 0 exponentially fast as r → ∞.

Show that Φ is tempered and stable.

9.6 Basics of convex functions. If a and b are elements of a linear space V over R, then their
convex combinations are the elements αa+ βb where 0 ≤ α ∈ R, 0 ≤ β ∈ R and α+ β = 1.
A set A ⊂ V is called convex if it contains every convex combination of its elements. For a
convex A ⊂ V , the function f : A → R ∪ {∞} is called convex if

f(αa+ βb) ≤ αf(a) + βf(b)

for any a, b ∈ A, 0 ≤ α ∈ R, 0 ≤ β ∈ R and α + β = 1. Show that convexity is a very strong
regularity property by proving the following statements: Suppose f : I → R ∪ {∞} is convex
and finite on the open (but possibly infinite) interval I ⊂ R. Then

(a) it is necessarily continuous,

(b) it has one-sided derivatives everywhere on I,

(c) These one-sided derivatives are monotonically non-decreasing,

(d) f is differentiable in all but at most countably many points.

9.7 Midpoint convexity. Let I ⊂ R be a (possibly infinite) interval. The function f : I → R∪{∞} is

called midpoint convex, if f(a+b
2
) ≤ f(a)+f(b)

2
for every a, b ∈ I. Show that if f : I → R∪{∞}

is finite, midpoint convex and bounded on a subinterval ∅ 6= J ⊂ I, then it is bounded on any
bounded interval, (continuous) and convex.

9.8 (homework) Jensen’s inequality. If a1, . . . , an are elements of a linear space V over R, then
their convex combinations are the elements

∑n
i=1 αiai where 0 ≤ α1, . . . , αn ∈ R and

∑n
i=1 αi =

1.
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(a) Show that if A ⊂ V is convex and a1, . . . , an ∈ A, then any convex combination
∑n

i=1 αiai
is also in A.

(b) Show that if A ⊂ V is convex, f : A → R ∪ {∞} is convex and a1, . . . , an ∈ A, 0 ≤
α1, . . . , αn ∈ R and

∑n

i=1 αi = 1, then

f

(

n
∑

i=1

αiai

)

≤
n
∑

i=1

αif(ai).

This is the simplest form of Jensen’s inequality.

Solution: Very easy, by induction in n. For n = 1 the statements are trivial identities, for
n = 2 they are the definitions of convexity (of A and of f , respectively). For n ≥ 3 assume
that the statements hold for n− 1.

Set β1 =
∑n−1

i=1 ai and β2 = an, so β1, β2 ≥ 0 and β1 + β2 = 1.

If β1 = 0, the statements are trivial. If not, set γi =
αi

β1
for i = 1, . . . , n − 1, so

∑n−1
i=1 γi = 1.

Set P :=
∑n

i=1 ai and b1 :=
∑n−1

i=1 γiai.

Now

(a) The inductive assumption implies that b1 ∈ A, so the convexity of A implies that β1b1 +
β2an ∈ A, but β1b1 + β2an = P . �

(b) The convexity if f implies that f(P ) = f(β1b1 + β2an) ≤ β1f(b1) + β2f(an), and the
inductive assumption implies that f(b1) = f(

∑n−1
i=1 γiai) ≤

∑n−1
i=1 γif(ai). Putting these

together,

f(P ) ≤ β1

n−1
∑

i=1

γif(ai) + β2f(an) =
n
∑

i=1

αif(ai).

�
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