
Mathematical Statistical Physics – LMU München, summer semester 2012
Hartmut Ruhl, Imre Péter Tóth

Homework sheet 11 – solutions

11.1 (homework) Metric structure on the Ising phase space and continuity. Consider the infinite
Ising phase space Ω = {−1, 1}Z

d

with the metric

d(σ, ω) :=
∞
∑

i=1

2−i1σk(i) 6=ωk(i)

where k is some fixed bijection from N = {1, 2, . . .} to Z
d.

Call a function f : Ω → R local, if it only depends on finitely many elements of the configu-
ration, i.e. there is a finite Λ ⊂ Z

d such that f(ω) = f(σ) whenever ω|Λ = σ|Λ.

Call a function f : Ω → R quasilocal, if there is a sequence fn of local functions such that
‖fn − f‖ → 0, where ‖.‖ denotes the supremum norm.

Show that

f is continuous ⇔ ∀ε > 0 ∃Λ finite : sup
σ∈ΩΛ,ω,ω′∈ΩΛc

|f(σω)− f(σω′)| < ε ⇔ f is quasilocal.

Solution: First of all, we know from the lecture that Ω is compact, so f is continuous iff it
is equicontinuous, which is equivalent to

∀ε > 0 ∃n ∈ N s.t. d(η1, η2) <
1

2n
implies |f(η1)− f(η2)| < ε. (1)

Let
Λn := {k(1), k(2), . . . , k(n)} ⊂ Z

d (2)

denote the set of points whose spins are counted with a weight at least 1
2n

in the definition
of the metric. From the definition of the metric, d(η1, η2) <

1
2n

iff η1 and η2 coincide on Λn –
let’s denote that by η1|Λn

= η2|Λn
. 1

• So to show the ⇒ direction of the first equivalence, Λ := Λn will do, where n is given by
(1).

• To show the ⇐ direction of the first equivalence, given a Λ there is surely an n for which
Λ ⊂ Λn, and this n will do, since if d(η1, η2) < 1

2n
then η1|Λn

= η2|Λn
, which of course

implies η1|Λ = η2|Λ, which by the assumption implies |f(η1)− f(η2)| < ε.

For the second equivalence: if f is quasilocal, then for every ε there is an fn local such that
‖f − fn‖ < ε

2
. Assume (without loss of generality) that this local function fn depends only

on the spins in Λn defined in (2). Now

• to see the ⇐ direction of the second equivalence, if η1|Λn
= η2|Λn

, then

|f(η1)− f(η2)| ≤ |f(η1)− fn(η1)|+ |fn(η1)− fn(η2)|+ |fn(η2)− f(η2)| ≤
ε

2
+ 0 +

ε

2
= ε,

so Λ = Λn will do.

1More precisely, d(η1, η2) <
1

2n
implies that η1|Λn

= η2|Λn
, and η1|Λn

= η2|Λn
implies d(η1, η2) ≤

1

2n
, but this is

not worth worrying about.
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• to see the ⇒ direction of the second equivalence, fix any ω ∈ Ω and define fn to be

fn(η) := f(η|Λn
ω|Λc

n
).

This fn is clearly local (depends only the spins in Λn). For any ε the assumption gives
a finite Λ, so for every n with Λ ⊂ Λn we have

|fn(η)− f(η)| = |f(η|Λn
ω|Λc

n
)− f(η|Λn

η|Λc
n
)| < ε.

11.2 (homework) Consistency of the (grand) canonical measure with boundary condition for the
Ising model. Let γ

β,h
Λ (A|η) denote the canonical measure of the set of configurations A un-

der the boundary condition η, with box Λ for a nearest-neighbour Ising model. Show that
whenever Λ1 ⊂ Λ2, we have

γΛ2(A|η
′) =

∫

γΛ1(A|η)γΛ2( dη|η
′).

Solution: As a reminder: for any given box Λ and boundary condition η ∈ Ω = {−1, 1}Z
d

,
the measure γ

β,h
Λ (A|η) is a measure on the entire Ω, but it is concentrated on a finite set –

namely the set of those configurations that coincide with η outside Λ. In particular, for every
σ ∈ Ω

γ
β,h
Λ ({σ}|η) :=

{

1
ZΛ(β,h|η)

e−βHΛ(σ|η), if σ|Λc = η|Λc ,

0, if not,
(3)

and these finitely many probabilities determine the measure γβ,h
Λ (.|η) completely. HereHΛ(σ|η)

denotes the conditional Hamiltonian of the system in Λ, with boundary condition η, evaluated
at σ. In the case of the nearest neighbour Ising model

HΛ(σ|η) := −
J

2

∑

i,j∈Λ,i∼j

σiσj − h
∑

i∈Λ

σi − J
∑

i∈Λ,j∈Λc,i∼j

σiηj, (4)

where i ∼ j means “i and j are neighbours”.

As a first goal, we patiently write out explicitly the “compatibility” equation we have to prove,
using the definition (3). The equation contains an integral, but in our case this integral is
just a finite sum, since we are integrating w.r.t. a measure that is concentrated on a finite
set. Furthermore, since the measure on the left hand side is concentrated on a finite set, it is
enough to check the equation for 1-element sets A = {σ}. That is, we have to show for every
σ ∈ Ω that

γΛ2({σ}|η
′) =

∑

ω∈ΩΛ2

γΛ1({σ}|ωη
′
|Λc

2
)γΛ2({ωη

′
|Λc

2
}|η′).

If σ|Λc

2
6= η′|Λc

2
, then the left hand side is zero, but Λ1 ⊂ Λ2 implies that σ|Λc

1
6= η′|Λc

1
as well,

so the right hand side is also zero, and the equation holds. So from now on we assume that
σ|Λc

2
= η′|Λc

2
. With that assumed, there are still a lot of zero terms on the right hand side:

namely those ω-s that don’t coincide with σ on Λ2 \ Λ1, all contribute zero. To reflect this
fact we rewrite the sum to run only over ω-s of the form ω = ξσ|Λ2\Λ1 with ξ ∈ ωΛ1. This
way ωη′|Λc

2
becomes ξσ|Λ2\Λ1η

′
|Λc

2
, but since we already fixed σ|Λc

2
= η′|Λc

2
, we can write this as

ωη′|Λc

2
= ξσ|Λc

1
. So we get that we have to show

γΛ2({σ}|η
′) =

∑

ξ∈ΩΛ1

γΛ1({σ}|ξσ|Λc

1
)γΛ2({ξσ|Λc

1
}|η′).
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Now all factors in all terms are nonzero and we can write this using the definition (3) as

1

ZΛ2(β, h|η
′)
e−βHΛ2

(σ|η′) =
∑

ξ∈ΩΛ1

1

ZΛ1(β, h|ξσ|Λc

1
)
e
−βHΛ1

(σ|ξσ|Λc
1
) 1

ZΛ2(β, h|η
′)
e
−βHΛ2

(ξσ|Λc
1
|η′)

.

The constant divisor ZΛ2(β, h|η
′) cancels out and we are left with

e−βHΛ2
(σ|η′) =

∑

ξ∈ΩΛ1

1

ZΛ1(β, h|ξσ|Λc

1
)
e
−βHΛ1

(σ|ξσ|Λc
1
)
e
−βHΛ2

(ξσ|Λc
1
|η′)

.

With that we accomplished the first goal, and it’s time to look at the definition (4) of H . We
first observe that HΛ2(.|η

′) only depends on the values of η′ outside Λ2, where we fixed it to
be equal to σ, so HΛ2(.|η

′) = HΛ2(.|σ). Similarly, HΛ1(.|ξσ|Λc

1
) = HΛ1(.|σ) and consequently

ZΛ1(β, h|ξσ|Λc

1
) = ZΛ1(β, h|σ), so the equation can be written in the little friendlier form

e−βHΛ2
(σ|σ) =

∑

ξ∈ΩΛ1

1

ZΛ1(β, h|σ)
e−βHΛ1

(σ|σ)e
−βHΛ2

(ξσ|Λc
1
|σ)
,

which in particluar does not contain η′. To match the two sides, it is a natural idea to use
the fact that Z is a normalizing factor in the form

∑

ξ∈ΩΛ1

1

ZΛ1(β, h|σ)
e−βHΛ1

(ξ∗|σ) = 1,

where ∗ can denote any element of ΩΛc

1
, HΛ1(ξ ∗ |σ) does not depend on it. So our equation

becomes
∑

ξ∈ΩΛ1

e−βHΛ1
(ξ∗|σ)e−βHΛ2

(σ|σ) =
∑

ξ∈ΩΛ1

e−βHΛ1
(σ|σ)e

−βHΛ2
(ξσ|Λc

1
|σ)
.

If we are lucky, the two sums are equal term by term – and that’s exactly what happens: it
is enough to check that for every ξ ∈ ΩΛ1 and every σ ∈ Ω

HΛ1(ξ ∗ |σ) +HΛ2(σ|σ) = HΛ1(σ|σ) +HΛ2(ξσ|Λc

1
|σ)

holds. This can be seen directly from the definition (4) by matching the terms of the sums on
the two sides.

11.3 Symmetries of the Ising model. Find all symmetries of the Ising model on Z
2 with the simplest

nearest neighbour interaction (without external field)

J({i, σi}, {j, σj}) =

{

−σiσj , if |i− j| = 1

0, if not

for every i, j ∈ Z
d and σi, σj ∈ {−1, 1}.

11.4 (homework) Ground states of the Ising model. Find all isolated and non-isolated ground
states for the Ising model of the previous exercise in d = 1. Find all isolated ground states in
d = 2. (Hint: show that there’s nothing else than what we saw on the lecture.) In d = 2, find
as many non-isolated ground states as you can. Have you found them all?

Solution:
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(a) For d = 1 this was done in class: a ground state can contain no island, so in d = 1 there
can be at most one boundary between a region of +-es and a region of −-es.

• The two configurations with all spins equal are isolated ground states, since changing
them in any finite box creates at least one island (two boundaries) and thus increases
the energy.

• The configurations with exactly one boundary (σ(k) = 1{k≤n}−1{k>n} or the negative
of this) are also ground states, since if we change them in a finite box, the boundary
can’t disappear. However, they are not isolated ground states, since it’s possible to
change them so that the boundary is only shifted, so the energy doesn’t change.

(b) For d = 2 the picture is much more complex. Here, instead of “boundaries”, it’s better
to talk about “contours” separating regions of +-es and −-es, which contribute to the
energy.

• (partially done in class) Also now, the two configurations with all spins equal are
isolated ground states, since changing them in any finite box creates at least one
island surrounded by a contour, and thus increases the energy. However, there are
also others: any configuration with a single straight contour is also an isolated ground
state, since changing it in a finite box either creates a new contour or increases the
length of this contour, and thus increases the energy. There are no more isolated
ground states, since

– A non-straight contour always allows for a local change which doesn’t increase
the energy.

– Two straight contours cannot be perpendicular and intersect, because then they
aren’t really contours – e.g. in the configuration

σ(i, j) :=

{

+1, if i, j ≥ 0 or i, j < 0

−1, if not
(5)

the contours (separating +-es from −-es) are actually two broken lines, and this
is not an isolated ground state.

– If there are two parallel straight contours, then changing all spins between the
two lines in a big enough box will decrease the energy.

• Concerning non-isolated ground states, clearly no contour can be a closed curve,
since then the entire island surrounded by it could be flipped and the energy would
decrease. So countours should be infinite curves. It is easy to see that only monotone
curves are allowed in the sense that any finite piece can be drawn (as a continuous
curve) either by using only “right” and “up” steps, or using only “right” and “down”
steps. 2 Indeed, if a contour is not monotone, it can be made shorter with a local
change, causing the energy to decrease.

– It is clear that if only 1 monotone contour is present (separating a “half-plane” of
+-es from a “half-plane” of −-es), then the configuration is a ground state, and
non-isolated unless the contour happens to be a (horizontal or vertical) straight
line.

– One could guess that there are no more ground states, but this is not the case:
it is indeed possible – with strong restrictions – to have two monotone contours

2This is the same as saying that the set of lattice points on one side of the contour should be either “monotone”
in the sense that if a point P is in it, then every point which is above or to the right of P is also in it, or the rotation
of such a monotone set.
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present in a (non-isolated) ground state. I will not give the precise condition
here (it’s not very hard), but mention the following examples (please draw):

∗ σ(i, j) :=

{

+1, if i, j > 10 or i, j < −10

−1, if not

∗ σ(i, j) :=

{

+1, if i ≥ 100, j ≥ 0 or i < −100, j < 10

−1, if not

∗ the configuration in (5).

– It’s not possible to have more than two contours peresent (not hard to see).

11.5 (homework) Curie-Weiss model. Consider the Ising-like model on ΩN := {−1, 1}N with the
Hamiltonian

HN(σ) := −
1

2N

N
∑

i,j=1

σiσj − h

N
∑

i=1

σi.

(There are no boundary conditions.) Calculate the limiting thermodynamic pressure

p(β, h) := lim
N→∞

1

βN
logZN(β, h)

as explicitly as possible.

Study the continuity and analiticity of p(β, h) — i.e. the existence of phase transitions. Find
the critical temperature βc =

1
Tc
.

Hint: we have shown in class that

βp(β, h) = sup
x∈(−1,1)

fβ,h(x)

where

fβ,h(x) = −
1 + x

2
log

1 + x

2
−

1− x

2
log

1− x

2
+

β

2
x2 + βhx.

Draw the graph of fβ,h(x) for different values of x.

Describe the behaviour of the magnetization m = ∂p
∂h

and the susceptibility χ := 1
β
∂m
∂h

near Tc

– that is, calculate the “critical exponents” of the power-law behaviour. In particular, find
the numbers b, γ, γ′ and δ for which, around the critical point (T, h) = (Tc, 0) we have

m(T, 0+) ∼ |T − Tc|
b as T ր Tc

χ(T, 0+) ∼ |T − Tc|
−γ as T ց Tc

χ(T, 0+) ∼ |T − Tc|
−γ′

as T ր Tc

|m(Tc, h)| ∼ |h|1/δ as h → 0

What does “∼” exactly mean here?

(Remark: the exponent b is usually denoted β, but now we better avoid confusion with β = 1
T
.)

Hint: The inverse functions are easy to write out and Taylor-expand (or differentiate). Using
β instead of T is equally good, and the exponents will be the same (please check).
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Solution: First draw the graph of fβ,h(x) for interesting values of β and h. As a start, set
h = 0, so fβ,0(x) is an even function and

f ′
β,0(x) = −

1

2
log(1 + x) +

1

2
log(1− x) + βx,

f ′′
β,0(x) =

−1

1− x2
+ β.

Thus the second derivative goes to −∞ as x → ±1 and has its maximum at x = 0. As a
result, fβ,0(x) is concave near ±1 (with derivatives going to ∓∞), and

• for β ≤ 1 it is concave everywhere, thus having a single maximum at 0,

• This single maximum is nondegenerate if β < 1 (with nonzero second derivative), while
degenerate for β = 1.

• for β > 1 it is convex near 0, thus having a minimum at 0 and two (equal) local (and
global) maximua at ±m∗(β, 0) 6= 0.

See Figure 1(a). The critical temperature is clearly βc = 1.
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Figure 1: fβ,h(x) for different values of β and h

If h is nonzero, a linear term is added, tilting the graph. See Figure 1(b).

• If β ≤ 1, this only moves the single maximum, leaving the function concave.

• If β > 1 and |h| is small enough, there will still be two local maxima near ±m∗(β, 0),
but they will no longer be equal. The value of the maximum will be the bigger local
maximum, which is nondegenerate (meaning f ′′ < 0).

• If β > 1, as |h| gets larger, the smaller local maximum gets degenerate and disappears,
but the bigger (later only) one stays nondegenerate.

Let’s denote the place of the global maximum by m∗(β, h), which is of course also a stationary
point, so it satisfies

0 = f ′
β,h(m∗(β, h)) = f ′

β,0(m∗(β, h)) + βh. (6)
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The global maximum m∗(β, h) is well defined unless β > 1 and h = 0. In this case

βp(β, h) = fβ,h(m∗(β, h)),

so the magnetization is

m(β, h) =
∂

∂h
p(β, h) =

1

β

(

∂

∂h
fβ,h(m∗(β, h)) + f ′

β,h(m∗(β, h))
∂

∂h
m∗(β, h)

)

=

= m∗(β, h) +
1

β
· 0 ·

∂

∂h
m∗(β, h) = m∗(β, h) (7)

if only ∂
∂h
m∗(β, h) exists. To see that it exists for every h 6= 0, we calculate the implicite

derivative from the equation (6) as

0 = f ′′
β,0(m∗(β, h))

∂

∂h
m∗(β, h) + β. (8)

So ∂
∂h
m∗(β, h) exists and is finite whenever f ′′

β,0(m∗(β, h)) 6= 0, which holds for all h 6= 0 (and
also for β < 1, h = 0), because then the global maximum is nondegenerate.

At β > 1, h = 0 the argument in (7) still works for one-sided derivatives, so

lim
hց0

p(β, h)− p(β, 0)

h
= m∗(β, 0) (9)

lim
hր0

p(β, h)− p(β, 0)

h
= −m∗(β, 0)

and p(β, h) is not differentiable w.r.t. h at 0.

From the above we can also read out the analiticity of p:

• p is analytic in h whenever there is a single nondegenerate maximum of f – that is,
everywhere except when β ≥ 1 and h = 0.

• The β-dependence of p is easier and less interesting: with h fixed, p(β, h) depends ana-
lytically on β everywhere except for (h = 0, β = 1).

To calculate the critical exponents, first notice that (9) says exactly that the magnetization at
h = 0+ at low temperature is exactly m := m(β, 0+) = m∗(β, 0). Writng out (6) explicitely,
this is given by

0 = f ′
β,0(m) = −

1

2
log(1 +m) +

1

2
log(1−m) + βm,

so the inverse function β(m) is easy to calculate and Taylor-expand:

β(m) =
log(1 +m)− log(1−m)

2m
=

=
(m− m2

2
+ m3

3
+ o(m3))− (−m− m2

2
− m3

3
+ o(m3))

2m
=

= 1 +
2m2

3
+ o(m2). (10)

So

|T − Tc| =

∣

∣

∣

∣

1

β
−

1

βc

∣

∣

∣

∣

=
|β − βc|

|ββc|
∼ |β − βc| ∼ m2,
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where ∼ means exactly that the ratio of the two sides converges to a nonzero constant (in this
case as β ց βc). After all,

m ∼ |T − Tc|
1/2 and so b =

1

2
.

For the critical exponents γ and γ′ one needs the susceptibility χ := 1
β
∂m
∂h

, but since m = m∗

we have already calculated this in (8), which can be written as

0 = f ′′
β,0(m)βχ+ β,

so
1

χ
= −f ′′

β,0(m) =
1

1−m2
− β.

• For β < 1 (T > Tc) we have m(β, 0) = 0, so 1
χ(β,0)

= 1 − β = |β − βc| ∼ |T − Tc| and
γ = 1.

• For β > 1 (T < Tc) we know from (10) that m(β, 0+) = 3
2
(β − 1) + o(β − 1), so

1

χ(β, 0+)
=

1

1− 3
2
(β − 1) + o(β − 1)

− β =

= 1 +
3

2
(β − 1) + o(β − 1)− β =

=
1

2
(β − 1) + o(β − 1) ∼ |β − βc| ∼ |T − Tc|,

so γ′ = 1 as well.

To get δ, we again write out (6) explicitely, this time with β = 1:

h(m) = h(m, β = 1) = −f ′
β,0(m) =

1

2
(log(1 +m)− log(1−m))−m =

=
m− m2

2
+ m3

3
+ o(m3)− (−m− m2

2
− m3

3
+ o(m3))

2
−m =

=
1

3
m3 + o(m3) ∼ m3,

so m(βc, h) ∼ h
1
3 and δ = 3.
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