Mathematical Statistical Physics – LMU München, summer semester 2012 Hartmut Ruhl, Imre Péter Tóth Homework sheet 13 – solutions

- 13.1 Prove a continuous time version (about endomorphism semigroups) of the von Neumann L^2 ergodic theorem using the discrete time version (about endomorphisms). *Hint: define* $F(x) := \int_0^1 f(S^s) \, \mathrm{d}s.$
- 13.2 (homework) Let (M, \mathcal{F}, T, μ) be an endomorphism and $n \in \mathbb{N}$.
 - (a) Show that if T^n is ergodic (w.r.t. μ), then T is also ergodic.
 - (b) Show that the converse is not true in general.

Solution:

(a) Suppose that T^n is egrodic. Then for any *T*-invariant function f (meaning $f = f \circ T$ μ -almost surely) we have

$$f \circ T^{k+1} = (f \circ T) \circ T^k = f \circ T^k \mu$$
-almost surely,

so by induction $f = f \circ T^n \mu$ -almost surely, so the ergodicity of T^n implies that f is constant μ -almost surely. We have shown that T is ergodic.

- (b) Counterexample: let $M = \{a, b\}$ be a 2-element set, μ be uniform on M and let T exchange the two elements: T(a) := b, T(b) := a. Then T is clearly ergodic, since for every invariant function f, f(a) = f(b) has to hold. On the other hand, $T^2 = Id$ is clearly not ergodic, since every function $f : M \to \mathbb{R}$ is invariant.
- 13.3 Rotation of the circle. Consider the phase space $S := \mathbb{R}/\mathbb{Z}$, which is a circle (or, if you like, a 1-dimensional torus, or the unit interval with periodic boundary conditions), with Lebesgue measure and the map $T : x \mapsto x + \alpha$ where $\alpha \in \mathbb{R}$.
 - (a) Show that T is an endomorphism.
 - (b) Show that T is ergodic iff α is irrational.
- 13.4 Weil theorem. Show the following: Let $S = \mathbb{R}/\mathbb{Z}$, $\alpha \in \mathbb{R}$ irrational and $I \subset S$ an interval. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{I}(\{k\alpha\}) = \operatorname{Leb}(I).$$

Here $\{k\alpha\}$ denotes the fractional part of $k\alpha$, and could be written just as $k\alpha$, since we consider this as $k\alpha \in S$ anyway.

Hint: use the ergdicity from the previous exercise and approximate indicator functions by continuous ones.

13.5 (homework) (An exercise of Arnold.) Consider the first digits (in base 10) of the sequence of numbers $1, 2, 4, \ldots, 2^n, \ldots$ Does 7 occur? Does 8 occur? Which one occurs more often? *Hint:* $\log_{10} 2$ *is irrational. Look at the previous exercise.*

Solution: An easy calculation shows that the first digit of 2^n is $k \in \{1, 2, ..., 9\}$ if and only if $\{n \log_{10} 2\} \in I_k := [\log_{10} k, \log_{10}(k+1))$ where $\{.\}$ denotes fraction part. So the Weil theorem implies that the density of such n is $Leb(I_k) = \log_{10}(1 + \frac{1}{k})$. So every k, including 7 and 8 occurs, and 7 occurs more often that 8.

- 13.6 On $S = \mathbb{R}/\mathbb{Z}$ with Lebesgue measure, consider the endomorphism group (flow) $S^t(x) := x + \alpha t$ where $\alpha \in \mathbb{R}$. Show that this is ergodic for every $\alpha \neq 0$. (Remark: actually this is even *uniquely ergodic*, meaning that this flow has only one invariant measure.)
- 13.7 Perron-Frobenius operator
 - (a) Let (M, \mathcal{F}, T) be an endomorphism and assume that x is a random point in M distributed as some measure ν on M. What is the distribution of Tx?
 - (b) Let $T : [0,1] \to [0,1]$ be piecewise monotone and almost everywhere differentiable. Let x be a random point of [0,1] with probability density ρ (w.r.t. Lebesgue measure). Show that Tx also has a density and calculate it.
 - (c) How does this work in higher dimensions?
- 13.8 (homework) Gauss map. Consider the map $T : (0,1] \to (0,1]$ defined as $Tx := \frac{1}{x} (mod1)$. Show that the measure on (0,1] with density $\frac{const}{1+x}$ is invariant.

Solution: Set $I_n := (\frac{1}{n+1}, \frac{1}{n}]$ for n = 1, 2, ... So $Tx = \frac{1}{x} - n$ on I_n . and $|T'(x)| = \frac{1}{x^2}$ (almost everywhere). We apply the Perron-Frobenius operator to the density $\varphi(c) = \frac{c}{1+x}$ and get

$$\begin{aligned} (\mathcal{P}\varphi)(y) &:= \sum_{x:Tx=y} \frac{\varphi(x)}{|T'(x)|} = \sum_{n=1}^{\infty} \frac{\varphi(\frac{1}{y+n})}{\frac{1}{(y+n)^2}} = \sum_{n=1}^{\infty} \frac{c}{(y+n+1)(y+n)} = \\ &= \sum_{n=1}^{\infty} \left[\frac{c}{y+n} - \frac{c}{y+n+1}\right] = \frac{c}{y+1} = \varphi(y). \end{aligned}$$

In the last step we used the fact that the sum is telescopic:

$$\sum_{n=1}^{\infty} \left[\frac{c}{y+n} - \frac{c}{y+n+1}\right] = \lim_{N \to \infty} \sum_{n=1}^{N} \left[\frac{c}{y+n} - \frac{c}{y+n+1}\right] = \lim_{N \to \infty} \left[\frac{c}{y+1} - \frac{c}{y+n+1}\right] = \frac{c}{y+1}$$

We have checked that $\mathcal{P}\varphi = \varphi$, so the mesure is invariant.

Remark: It is false to claim that $\sum_{n=1}^{\infty} \left[\frac{c}{y+n} - \frac{c}{y+n+1}\right] = \sum_{n=1}^{\infty} \frac{c}{y+n} - \sum_{n=1}^{\infty} \frac{c}{y+n+1}$, since both sums on the r.h.s. are divergent.

13.9 (homework) The simplest possible convergence to equilibrium. Consider the map $T: S \to S$, Tx = 2x. Let ν be a measure on S which is absolutely continuous w.r.t. Lebesgue measure, with a density φ which is Lipschitz continuous meaning

$$Lip(\varphi) := \sup_{x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|dist(x-y)|} < \infty.$$

Show that $\nu_n := \nu \circ T^{-n}$ converges to Lebesgue measure weakly.

Hint: What happens with $Lip(\varphi)$ under time evolution?

Solution: Let $I_0 = [0, 1/2)$ and $I_1 = [1/2, 1)$ so Tx = 2x on I_0 and Tx = 2x - 1 on I_1 and |T'(x)| = 2 almost everywhere. Applying the Perron-Frobenius operator to a density φ gives

$$(\mathcal{P}\varphi)(y) := \sum_{x:Tx=y} \frac{\varphi(x)}{|T'(x)|} = \frac{\varphi(\frac{y}{2}) + \varphi(\frac{y+1}{2})}{2}.$$

We can estiame the Lipschitz constant of this $\mathcal{P}\varphi$ as

$$\begin{aligned} |(\mathcal{P}\varphi)(y_1) - (\mathcal{P}\varphi)(y_2)| &= \frac{1}{2} \left| \varphi(\frac{y_1}{2}) + \varphi(\frac{y_1+1}{2}) - \varphi(\frac{y_2}{2}) - \varphi(\frac{y_2+1}{2}) \right| &= \\ &= \frac{1}{2} \left| \varphi(\frac{y_1}{2}) - \varphi(\frac{y_2}{2}) + \varphi(\frac{y_1+1}{2}) - \varphi(\frac{y_2+1}{2}) \right| \leq \\ &\leq \frac{1}{2} \left| \varphi(\frac{y_1}{2}) - \varphi(\frac{y_2}{2}) \right| + \frac{1}{2} \left| \varphi(\frac{y_1+1}{2}) - \varphi(\frac{y_2+1}{2}) \right| \leq \\ &\leq \frac{1}{2} \left| \frac{y_1}{2} - \frac{y_1+1}{2} \right| Lip(\varphi) + \frac{1}{2} \left| \frac{y_2}{2} - \frac{y_2+1}{2} \right| Lip(\varphi) = \\ &= \frac{1}{2} \cdot 2 \cdot \frac{|y_1 - y_2|}{2} Lip(\varphi), \end{aligned}$$

which gives

$$Lip(\mathcal{P}\varphi) \leq \frac{1}{2}Lip(\varphi),$$

so $Lip(\mathcal{P}^n\varphi) \to 0$ as $n \to \infty$, which immediately implies $\sup \mathcal{P}^n\varphi - \inf \mathcal{P}^n\varphi \to 0$. On the other hand $\mathcal{P}^n\varphi$ is a probability density on (0,1) which has to integrate to 1, which implies that $\inf \mathcal{P}^n\varphi \leq 1 \leq \sup \mathcal{P}^n\varphi$. Now these together imply that $\sup \mathcal{P}^n\varphi \to 1$ and $\inf \mathcal{P}^n\varphi \to 1$ as well, and $\mathcal{P}^n\varphi \to 1$ everywhere (uniformly). We know from Homework 2.5 that this implies weak convergence of the measures ν_n to Lebesgue measure.

- 13.10 Perron-Frobenius operator, invertible dynamics and entropy
 - (a) Let (M, \mathcal{F}, T, μ) be an endomorphism and assume that x is a random point in M distributed as some measure ν on M, but possibly $\nu \neq \mu$. Assume however, that $\nu \ll \mu$ with density ρ . Show that $Tx \ll \mu$ as well, and calculate the density.
 - (b) (M, \mathcal{F}, T, μ) be an *automorphism* and ν a measure on (M, \mathcal{F}) such that $\nu \ll \mu$. Define ν_n as $\nu_n := (\hat{T}^*)^n \nu = \nu \circ T^{in}$. Calculate the relative entropy $S_n = H(\nu_n | \mu)$.
 - (c) How come?