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Abstract

The fundamental theorem (also called the local ergodic theorem) was intro-
duced by Sinai and Chernov in 1987, see [S-Ch(1987)] and an improved version
in [K-S-Sz(1990)]. It provides sufficient conditions on a phase point under which
some neighborhood of that point belongs to one ergodic component. This the-
orem has been instrumental in many studies of ergodic properties of hyperbolic
dynamical systems with singularities, both in 2-D and in higher dimensions. The
existing proofs of this theorem implicitly use the assumption on the boundedness
of the curvature of singularity manifolds. However, we found recently ([B-Ch-Sz-
T(2000)]) that, in general, this assumption fails in multidimensional billiards. Here
the fundamental theorem is established under a weaker assumption on singulari-
ties, which we call Lipschitz decomposability. Then we show that whenever the



scatterers of the billiard are defined by algebraic equations, the singularities are
Lipschitz decomposable. Therefore, the fundamental theorem still applies to phys-
ically important models — among others to hard ball systems, Lorentz gases with
spherical scatterers, and Bunimovich-Rehicek stadia.



1 Introduction

In contrast to smooth dynamical systems, billiards have singularities which make the
application of the classical methods substantially more difficult. One reason is that in
the neighbourhood of orbits tangent to the obstacles (the so-called tangent singularities)
the derivative of the Poincaré section map diverges. Nevertheless, Sinai’s celebrated
1970 result demonstrated that, at least for d = 2, the hyperbolicity caused by the strictly
convex scatterers overcomes the harmful effect of sigularities. In fact, he showed that
2D dispersing billiards, i. e. those with strictly convex obstacles, are ergodic and even
K-mixing [S(1970)].

Multidimensional geometry is, however, essentially richer so it is not surprising that
it had taken 17 years until Chernov and Sinai [S-Ch(1987)] could extend Sinai’s origi-
nal result to multidimensional dispersing billiards. This remarkable achievement was a
corollary of their local ergodicity theorem, often called the fundamental theorem, formu-
lated for semi-dispersing billiards, i. e. those with convex scatterers. Their theorem
got slightly generalized with the clarification of some technical details and conditions by
Kramli, Simanyi and Szdsz [K-S-Sz(1990)] in 1990.

The considerations in the proof of the local ergodicity theorem are local. As a matter
of fact, by assuming the boundedness (from above) of the curvature of all images of the
tangencies, which is a straightforward fact for d = 2, it became possible to assume that
they are linear objects, at least locally. However, in the recent paper of the present au-
thors, [B-Ch-Sz-T(2000)] it has been discovered that for d > 3, in the neighbourhoods of
tangent orbits the images of tangencies (and of other smooth one-codimensional subman-
ifolds of the phase space) develop a pathological behaviour contradicting the boundedness
of the curvatures. Therefore for its own interest but also for its various important conse-
quences it became an absolute necessity to correct the original arguments and this is the
sole aim of this work. Indeed, instead of the boundedness property of the aforementioned
curvatures we formulate a new condition, the so called Lipschitz-decomposability condi-
tion. Roughly speaking it requires that the singularities can be decomposed into a finite
number of graphs of locally Lipschitz functions with the boundaries of these graphs be not
too wild. This assumption, together with the other requirements of the local ergodicity
theorem, is already sufficient to save the old proof. The next question is, of course, when
this new condition holds. Fortunately, we can verify it under one additional requirement:
we assume that the scatterer boundaries are algebraic. Luckily enough, the main exam-
ples of multidimensional semi-dispersing billiards are all algebraic. Just think — first of
all — of hard ball sytems [SSz(1999)], [Sim(2001)], of the Lorentz process with spheri-
cal scatterers ([H(1974)], [Sz(2000)]), of general algebraic cylindrical billiards [Sz(1994)],
[Sim(2002)], and of the multidimensional stadia designed by Bunimovich and Rehacek
[B-R(1998)].

For keeping our exposition possibly short, we rely heavily on that of [K-S-Sz(1990)].
In section 2, we summarize the necessary notations and prerequisites from the aforemen-
tioned work. Section 3 is devoted to the study of singularities. In particular, in subsection



3.1 we briefly recall the pathological behaviour described in [B-Ch-Sz-T(2000)]. Then, in
subsection 3.2 we present the aforementioned Lipschitz decomposability property of the
singularities. Based upon this assumption, in section 4 we reformulate the local ergodic-
ity theorem and discuss in detail where and how the classical proof of [S-Ch(1987)] and
[K-S-52(1990)] should be modified. Finally, in section 5 it is shown that the Lipschitz
decomposability property holds for algebraic billiards. Though here we use some simple
ideas from algebraic geometry and from geometric measure theory, the arguments are
still elementary.

2 Prerequisites

The methods in this paper, though quite elementary, come from different branches of
mathematics. Throughout the arguments we try to keep the exposition self-contained.
More details on the basic notions from algebra or geometric measure theory can be found
in the books [B-C-R(1987)], [Sh(1974)], [St(1973)] and [F(1969)], [Fa(1985)], [P(1997)];
respectively.

We would also like to fix one notation: for any subset in a Riemannian manifold
H c M, HP shall denote its d-neighborhood:

HY = {x € M | p(z, H) < §}. (2.1)

2.1 Multi-Dimensional Semi-Dispersing Billiards

In this subsection we summarize some basic properties of semi-dispersing billiards. Our
aim is to introduce the most imortant concepts and fix the notation in order to keep the
exposition of the paper self-contained. For a more detailed description see the literature,
especially [K-S-Sz(1990)].

A billiard is a dynamical system describing the motion of a point particle in a con-
nected, compact domain Q@ C T%. In general, the boundary of the domain in assumed to
be piecewise C*-smooth, however, later on we impose the further restriction of algebraic-
ity on the billiard (cf. section 5). Inside @) the motion is uniform while the reflection
at the boundary 0() is elastic. As the absolute value of the velocity is a first integral of
motion, the phase space of the billiard flow is fixed as M = Q x S¢~! — in other words,
every phase point z is of the form z = (¢,v) with ¢ € Q and v € R¢, |v| = 1. The Li-
ouville probability measure p on M is essentially the product of the Lebesgue measures,
i.e. du = const.dgdv. The resulting dynamical system (M, {S*,t € R}, 1) is the billiard
flow.

Let n(g) denote the unit normal vector of a smooth component of the boundary 0Q
at the point ¢, directed inwards ). Throughout the paper we restrict our attention on



semi-dispersing billiards: we require that for every ¢ € @) the second fundamental form
K(q) of the boundary component be non-negative.
The boundary 0@ defines a natural cross-section for the billiard flow. Consider namely

oM = {(q,v) | ¢ € 0Q, (v,n(q)) > 0}.

This set actually has a natural bundle structure (cf. [B-Ch-Sz-T(2000)]). In this paper
we use the arising Riemannian metric p on M. The billiard map is defined as the first
return map on dM. The invariant measure for the map is denoted by w1, and we have
duy = const. |(v,n(q))| dgdv. Throughout the paper (except for subsection 5.1) we work
with this discrete time dynamical system. Its ergodicity implies that of the flow (see
[K-S-Sz(1990))).

Singularities. Consider the set of tangential reflections, i.e.
R :={(g,v) € M | (v,n(q)) = O}.

It is easy to see that the map T is not continuous at the set T-'R. As a consequence,
the singularity set for a higher iterate 7™ is

RM™ =ur R,

where in general R¥ = T*R. Generally it was assumed in the literature that the set
R™ is a finite collection of smooth and compact submanifolds of the Poincaré phase
space OM. However, for multi-dimensional semi-dispersing billiards these manifolds can
be treated as submanifolds of OM only in a topological sense (see section 3).

Remark 2.1. Above the (tangential) singularities have been introduced for the Poincaré
section map T'. But in a part of the proof following remark 5.3 they will also be needed for
the flow. In fact, the aim of the aforementioned remark is just to hint how this extension
of the singularities is understood.

For completeness we mention that in case the boundary 0@ is only piecewise smooth,
further singularities — the multiple collisions — arise. At such points neither n(g) and, as a
consequence, nor the flow dynamics is uniquely defined, thus we can speak about several
“branches” of a trajectory. The singularity set must also be treated with a little more
care. For this reason, in all cases we will denote by R* the set of all singular phase points,
which can be points of R or multiple collision points supplied with the possible outgoing
velocities. (See [Sim(2001)] and its references for details). In the present paper we
consider only tangential singularities. Multiple collisions can be treated in an analogous
way, although the main difficulty — the blow-up of the derivative of the dynamics — does
not appear here.

We introduce some more notation. For any n € N, A,, stands for the set of doubly
singular phase points up to order n, i.e. x € 0M belongs to A, whenever there are
indices ki # ko, |k;| < n such that both Tk 2 and T*2x are elements of R. We are mainly
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interested in phase points with regular or with at most once singular trajectories, thus
we consider the following sets:

oM°:= oM\ |JR"
neZ
oM*:= oM\ A,
n=1
OM':=  OM*\ oM. (2.2)

As to regular and at most once singular phase points of the flow, the sets M°, M* and
M! refer to flow-images of OM°, OM* and OM?*, respectively.

Different notions of metrics and distances. In billiard theory several notions
of metrics and distances are used. Let us assume that two phase points x = (g,v)
and ' = (¢’,v’) and a vector in the tangent plane at xz, w = (dg,dv) are fixed. In all
calculations presented in the paper we use the Euclidean metric ||w| = +/]0g|? + |dv]|?
and the generated Euclidean distance p(z,z'). The measure on M corresponding to
this Riemannian metric (generated by the volume form) is simply the Lebesgue measure
const. dgdv. However, in several other statements referred (see e.g. [K-S-Sz(1990)],
especially the Erratum) two other metrics come about. For their definition we fix the
notion for two d— 1 dimensional linear subspaces in R¢: T, the one orthogonal to n(q) and
J, the one orthogonal to v. Furthermore we introduce the linear operator V' : 7 — T
which is simply the projection parallel to v. (On details see [B-Ch-Sz-T(2000)].)

This way we may define the invariant norm of a vector: |lw|; = /|V~18¢[> + [6v]?
and the generated invariant distance p;(z,z'). The name ’'invariant’ comes from the fact
that the measure corresponding to this Riemannian metric (via the volume form) is the
invariant measure du; = const. |(v,n(q))| dgdv. Note that ||w||[{v,n(q))| < ||w|; < ||w]|,
thus the two distances are equivalent if we can ensure |(v,n(q))| > ¢ for some constant
c. This happens throughout the proof of the fundamental theorem (cf. section 4) where
we work in a neighborhood of an interior point x € M and thus the two metrics are
(locally) equivalent.

The third metric-type quantity is the so-called p-metric ||w||, = [V ~'dq|. Even though
this is a degenerate metric in general (that is the reason for the name 'p’ — pseudo), it
is a non-degenerate when restricted to vectors w corresponding to convex fronts (cf.
[K-S-Sz(1990)], [B-Ch-Sz-T(2000)]). Its importance is related to the fact that the most
convenient way of handling hyperbolicity issues is in terms of the p-metric (see e.g.
Lemma 2.2).

Related to the above mentioned metrics there are two ways of measuring distance
of a phase point x = (g,v) from the set of tangential reflections R. z(z) = p;(z,R) is
simply the distance in terms of p;. Alternatively we may consider tubular neighborhoods
U, (of radii r) of the flow trajectory starting out of z in the configuration space Q. Then
define zy,5(x) as the supremum of radii 7 for which the tube does not intersect the set of




singular reflections (see [S-Ch(1987)] and [K-S-Sz(1990)], especially the Erratum). It is
not difficult to see that z(z) < zys(x).

Hyperbolicity. Besides the presence of singularities the most important feature of
semi-dispersing billiard dynamics is that it is — at least locally and non-uniformly — hy-
perbolic. A highly important consequence of this fact is the abundance of local invariant
manifolds. The notion of a local invariant manifold will be used in the traditional sense,
i.e. a Cl-smooth, connected submanifold v, C M is a local stable manifold at x € OM
iff

(1) x€s
(17) 3K (vs),C(7s) > 0 such that for any yi, ys € 7,
p(T"y1, T"ys) < K exp(=Cn)p(y1, ya)- (2.3)

Local stable manifolds for the inverse dynamics 7! will be referred to as local unstable
manifolds.

The treatment of hyperbolicity is traditionally related to local orthogonal manifolds
(or fronts) and sufficient phase points. These objects are defined in the flow phase space
the following way.

Let x = (q,v) € M \ OM and consider a C?-smooth codimension 1 submanifold
¥ C Q\0Q such that ¢ € 3" and v = v(q) is the normal vector to X' at g. Denote by ¥
the normal section of the unit tangent bundle on @) restricted to ¥'. ¥ is called a local
orthogonal manifold or simply a front. A front is said to be (strictly) convex whenever
its second fundamental form By (y) > 0 (Bg(y) > 0) for every y € ¥.

Let us consider a nonsingular finite trajectory segment for the flow: S*¥z, where
a <0< band a, b, 0 are not moments of collision.

No(S!el), the neutral subspace at time 0 for the segment S'*tlz is defined as follows:

No(Sletly) .= { weR:3(6 > 0)s.t.Vo € (—4,6)
v(S*(¢q(z) + aw,v(z))) = v(S*z)&
v(S%(g(z) + aw,v(2))) = v(S°z)}.

Observe that v(x) € Ny(SI*?lz) is always true, the neutral subspace is at least 1 dimen-
sional. Neutral subspaces at time moments different from 0 are defined by N;(Sl*tlz) :=
Np(Sle=t4=1(Stz)), thus they are naturally isomorphic to the one at 0.

The non-singular trajectory segment S®%lz is sufficient if for some (and in that case
for any) t € [a,b] :  dim(N;(SI*tlz)) = 1. A point 2 € M° is said to be sufficient if
its entire trajectory S~z contains a finite sufficient segment. Singular points are
treated by the help of trajectory branches (see [K-S-Sz(1990)]): a point z € M! (this
precisely means that the entire trajectory contains one singular reflection) is sufficient if
both of its trajectory branches are sufficient.

All these concepts have their natural counterparts for the billiard map phase space
OM. For example, a smooth piece ¥ € OM of the image of a local orthogonal manifold
in M is referred to as a front as well.



Hyperbolicity is related to the following simple phenomena. Near sufficient phase
points hyperplanes in () orthogonal to the flow evolve into strictly convex fronts. Con-
vex fronts remain convex under time evolution. The importance of this is shown by
the Lemma below. Before formulating it we introduce one more notation: Dy is the
derivative of the (nth power of the) dynamics 7™ restricted to the front X.

Lemma 2.2. (Equivalent of Lemma 2.13 from [K-S-Sz(1990)].) For every z € dM°
for which the trajectory is sufficient there ezists a neighborhood U(z) and a constant
0 < A(z) <1 such that

e through almost every point y € U(x) there do pass uniformly transversal local stable
and unstable manifolds v*(y) and ¥*(y) of dimension d — 1;

e for any y € U(x) and any convex front ¥F passing through +y:

1(DLys2) " llp < Al2), (2.4)
where T € Z is the first return time to U(x).

More details about local hyperbolicity and semi-dispersing billiards in general can be
found in [K-S-Sz(1990)].

3 Singularities

In several papers that appeared, singularities were assumed — either explicitely or im-
plicitely — to consist of smooth 1-codim submanifolds of the phase space. Often, even
a uniform bound on the curvature was assumed, independent of the order of the singu-
larity. This is true for 2D billiards. However, it is not true in higher dimensions. In
this section we present a counter-example in a 3-dim dispersing billiard. Already the
curvature of R~2 has no upper bound, i.e. the curvature blows up near a point where the
singularity manifold is not even differentiable. After this example we propose another
property which, in most applications, can replace the bounded curvature assumption.
We conjecture that this property: the Lipschitz decomposability of singularities holds for
multi-dimensional semi-dispersing billiards.

3.1 Counter-example for bounded curvature

In this section we recall our example from [B-Ch-Sz-T(2000)] showing that even in a
3D dispersing billiard, already the two-step singularities have no bounded curvature.
The proof given in [B-Ch-Sz-T(2000)] was rather implicit. We started with the indirect
assumption that the curvature was bounded, and found that

Claim The two-step singularity intersects the one-step singularity tangentially at ev-
ery point of their intersection, except for a one-codimensional degeneracy, where the
intersection is not tangential.



This claim obviously contradicts the bounded curvature assumption.

We do not repeat here the calculations of [B-Ch-Sz-T(2000)], but rather we present
the concrete situation where this pathological behaviour appears.

Since this example deals with a very explicitely given billiard configuration, we will
not use the complicated notations of the other sections: we will denote R ¥ simply with
Sk (k> 0).

Figure 1: The studied billiard configuration

Consider the situation demonstrated on Figure 1. To present the example as trans-
parent as possible the first scatterer, the surface where the trajectories start out is a
plane — thus it is not strictly convex. Nevertheless this modification has no significance.

We are in 3 dimensions, so take a standard 3D Cartesian coordinate system. Let
the zeroth ’scatterer’ be the {z = 0} plane. Let the first scatterer be the sphere with
centre O; = (0,—1,1) and radius R = 1. Let the second scatterer be the sphere with
centre Oy = (1,0, 2) and radius R = 1. We look at the component of the phase space
corresponding to the zeroth scatterer, near the phase point (zo = 0,y = 0, v50 = 0,vy0 =
0). Of course, v,0 = 1, and the trajectory is the z axis. The counterexample mentioned
in the Claim is the intersection of 57, the inverse image of the first scatterer, and Ss, the
second inverse image of the second scatterer, both considered on the zeroth scatterer in
(the neighbourhood of) the origin. We are mainly interested in the singularity manifolds
close to a doubly tangent orbit.

The calculations of [B-Ch-Sz-T(2000)] show that at the origin S; and Sy can not
be tangent. This is essentially the consequence of the circumstance that in the two
points of tangencies (with the first and second spheres) the two normals of incidence are
perpendicular to each other. In all other situations S; and S, are tangent! Consequently
at the origin S5 is not even differentiable.

Next we recall a much useful paradigm which is a well known object of algebraic
singularity theory: the Whitney umbrella. It not only illustrates better the pathological
situation in three dimensions (rather than our counterexample in dimension 4) but also
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suggests to find the way out: to substitute the condition on the boundedness of curvatures
with the Lipscitz decomposability property.
The Whitney-umbrella. Consider the one-codimensional set in R? defined by the
polynomial equation:
{(z,y,2) € R® | 2%z = 4°},

the Whitney-umbrella. ‘One half’ of this set (its intersection with the quadrants {zy <
0}) is shown on Figure 2. For simplicity we use the notations: W5 for this ‘half-umbrella’
and W for the {z = 0} plane. Clearly

e W, terminates on W; (in the points of the z-axis), thus Wi N Wy = oW,
e at every point of the z-axis where x # 0 the intersection of W, and W} is tangential.

e W, has smooth manifold structure in its interior; nevertheless, near the origin its
curvature is unbounded as the normal vector changes rapidly (actually, the unit
normal vector does not even have a well-defined limit at the origin).

Figure 2: The Whitney Umbrella

By these properties the geometry of singularities in the counterexample is analogous
to Figure 2. ! W, corresponds to S;, W, corresponds to S, while the origin corresponds
to the set of those doubly tangential reflections where the two radii are orthogonal (this
set is one-codimensional in S; N S5).

Lipschitz decomposability of the Whitney-umbrella

This analogy also shows that bounded curvature is not needed for the neighbourhood
of a manifold to be small. Indeed, the ‘half-umbrella’ W5 can be cut further into two
pieces (namely, its intersections with the quadrants {z > 0,y < 0} and {z < 0,y > 0}),

1To be precise, the situation on Figure 2. has one dimension less — in contrast to W5 the singularities
are 3-dimensional manifolds — but this has little significance to the analogy.
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each of which is the graph of a Lipschitz function, when viewed from the appropriate
direction. Indeed, easy calculations show that if we choose the direction (1,1,1) or
(—1,—1,1) to be ‘vertical’ (respectively), these ‘quarter-umbrellas’ become graphs of
Lipschitz functions with Lipschitz constant v/2. So the whole Whitney-umbrella consists
of four such graphs plus a one-dimensional tail. This tail (the negative z axis) has no
analogue in the singuarities of billiards. It’s only there because the umbrella was defined
in an algebraic way. However, it will not spoil our measure-theoretic estimates because
it has one dimension less than the rest of the set.

Generalization 1. First let us consider the first-step singularity S;. By the notations
of the previous counterexample we may characterize the points (z, vy, v;, v,) belonging to
Sy easily. These are precisely those for which d(z,y,v,,v,) = 1, where d(., ., .,.) is the
distance of the point O; = (0, —1,1) from the line that passes through the point (z,y,0)
and has direction specified by the velocity components v;,v,. As d is a smooth function
of its variables there is no curvature blow-up for S; — and, for first-step singularities in
general. Thus S is a pre-image of a smooth one-codimensional compact submanifold,
however, the map under which the pre-image is taken has unbounded derivatives and
is highly an-isotropic. Curvature blow-up occurs only at those points of Sy (near its
intersection with S;) where the map behaves irregularly.

In correspondence with the above observation we conjecture that curvature blow-up is
not a peculiar feature of S, it is present in the pre-images of one-codimensional smooth
submanifolds in general. Consider for example two-step secondary singularities 'y —
those phase points for which at the second iterate instead of tangentiality the collision
term ((n,v)) is a given constant (see [B-Ch-Sz-T(2000)] for more detail). In the specific
example of subsection 3.1 such secondary singular trajectories are precisely those that
touch tangentially a sphere of radius R’ (R’ < 1) at the second iterate. It is clear that
the geometry of I'y is completely analogous to Ss.

Generalization II. Our calculations in [B-Ch-Sz-T(2000)] do not use any speciality
of the explicitly given billiard configuration. Doubly tangential reflections for which
the normal vectors of the scatterers at the consecutive collisions are orthogonal can be
found in any multi-dimensional semi-dispersing billiard. Near such trajectories a similar
calculation can be performed.

Generalization III. All in all, the discovered pathology is general. In addition, the
higher step singularities S; (k > 3) may show even wilder behaviour near their inter-
sections. Nevertheless, we strongly conjecture that a nice geometric characterization —
suggested by the analogy with the Whitney-umbrella in the case of Sy — can be performed.

We have mentioned these generalization to present the reader the picture of singular-
ities we have in mind. Nevertheless, for our further discussion we do not need to verify
any of these calculations or generalizations since they are completely independent.
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3.2 Lipschitz property of singularities

When treating ergodic or stochastic properties of singular systems, we need to understand
the properties of singularities in order to know that their neighbourhood is of small mea-
sure. By assuming that the singularities are smooth, e. g. they have bounded curvature,
in local considerations one can treat them as planes, by choosing an appropriately small
scale. This, of course, implies that the intersection of a (smooth) singularity component
and a sphere of radius r has a surface-volume of order »™~! where m = 2d — 2 is the
dimension of the phase space. Similarly, the §-neighbourhood of such a singularity-piece
has measure of order r™~1§. These properties have been used in several papers without
being checked. We now know that the curvature is in general not bounded, so a more
careful investigation is essential.

To ensure that the regularity properties mentioned hold, we (approximately) propose
to assume that the singularities have components which are graphs of Lipschitz functions
— instead of assuming they have smooth components.

Definition 3.1. A subset H of R™ will be called a Lipschitz graph, if we can choose a
Cartesian coordinate system so that H becomes the graph of a Lipschitz function: H =
{(z, f(z)) | * € D} with some (measureable) D C R™™! and f : R"~' — R Lipschitz-
continuous.

Being a Lipschitz graph ensures that H is rectifiable, and that for its surface-volume
one has p(H) < Cp(D) where the constant C' depends only on the Lipschitz constant of
f- The main property of Lipschitz graphs is shown by the following very basic

Lemma 3.2. Let D C R™ ! arbitrary, f : R™ ! — R Lipschitz-continuous with Lip-
schitz-constant L. Let H = {(z, f(z)) | * € D} C R™. Denote by L™ the Lebesgue-
measure in R™, and by L™ ' the Lebesque-measure in R™ 1. Denote by HY the §-
neighbourhood (in R™) of H. Then

Lm(HP) < 26/ L2 +1L™ (D) + o(6) (3.1)
Proof. Just notice that
HY ' {(z,y) |z € DY), |y — f(x)| < 6VI2+1},
where D is the -neighbourhood of D in R™'. This implies
£m(HY) < 26V L2 +1£™ (D)
which gives the lemma, since L™~ }(DI) — £™Y(D) as § — 0. O

To precisely formulate the property that we propose instead of smoothness of the
singularities, we need the following two definitions:
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Definition 3.3. (c¢f. [F(1969)]) A function f : D C R™™' — R will be called locally
Lipschitz (with Lipschitz contant L), if for any x € D there exists a neighbourhood U C

R™ ! of x such that the restricted function f‘ is Lipschitz (with Lipschitz constant
DU
L).

In all our applications D will be open. Notice that in this case, f typically cannot
even be extended to D in a continuous way.

Definition 3.4. H C R™ will be called a (one-codimensional) open locally Lipschitz
graph (with Lipschitz constant L), if we can choose an appropriate Cartesian coordinate
system so that H becomes the graph of a locally Lipschitz function.:

H={(z, f(z) |z € D}

with some D C R™™! and f : D — R locally Lipschitz (with constant L).

We will be mainly interested in the case when the domain D is an open set in R™1,
then

— H will be called an open locally Lipschitz graph (even though it is not an open set
in R™ ),

— and we will denote by OH the boundary of H as of a surface: 0H = H \ H.

Now we are able to define the regularity property that should replace the smoothness
of singularities. This property, called ‘Lipschitz decomposability’ will be defined for
subsets of R™ here. For Lipschitz decomposability of subsets of a Riemannian manifold,
see Remark 3.6.

Definition 3.5. Consider H C R™, and L € R. H will be called ‘Lipschitz decompos-
able’ (one-codimensional) subset with constant L if it can be decomposed into a finite

number of open locally Lipschitz graphs and a small remainder set in the following way:
There exist H* and Hy, ..., Hix such that:

K
e HC | H;UH?,
i=1
e HNH; =0 for any i # j,
e cvery H; is a one-codimensional open locally Lipschitz graph (with constant L),
K (4]
o LT ((U 0H;) U H*) = 0(9).
i=1

The set H* is included in the decomposition for technial reasons: we want to allow
for sets H having parts of strictly higher codimension. This occurs generically if H is
an algebraic subvariety of R — cf. subsection 3.1 on the one dimensional tail of the
Whitney-umbrella and section 5. Nevertheless we would like to note that such higher
codimensional parts are not present in the singularities of semi-dispersing billiards.
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Remark 3.6. Lipschitz decomposability in Riemannian manifolds. Throughout the pa-
per — and in particular in conjecture 8.7 below — subsets of a compact Riemannian man-
ifold M are considered. For H C M Lipschitz decomposition is understood in terms of
coordinate charts.

To be more precise, let us fix some convention related to the atlas {U;, v}, for
M first. It is important that M is compact thus we may consider a finite atlas. We
say that the atlas is bi-Lipschitz if all charts ¥y : Uy — R™ are bi-Lipschitz maps, i.e.
both v and (¢;)~! are Lipschitz with some constant K > 1. All atlases considered are
assumed to be bi-Lipschitz with a fixed constant. This ensures that Fuclidean distance on
R™ s comparable to Riemannian metric on the manifold, and thus our metric estimates
indeed apply in the arguments of section 4. Note that bi-Lipschitzness — with Lipschitz
constant arbitrarily close to one — can always be obtained by choosing the coordinate
patches sufficiently small.

As to the problem of Lipschitz decomposition, we will say that H C M 1is Lipschitz
decomposable whenever a finite bi-Lipschitz atlas can be chosen, such that for all charts
vy (H NUy) is Lipschitz decomposable as a subset of R™, in the sense of Definition 3.5. 2

The precise property that we expect the singularities of semi-dispersing billiards to
have is formulated in the form of a conjecture:

Conjecture 3.7. For any semi-dispersing billiard with a finite horizon there exists an
L € R such that for any integer N the set U‘n|<N R™ of singularities of order up to N is
‘Lipschitz decomposable’ with constant L. -

It is worth noting that by introducing “transparent walls” (cf. [S-Ch(1987)]) any
semi-dispersing billiard can be reduced to one with a finite horizon.

The statement of this conjecture will appear word by word among the conditions
of the modified version of the fundamental theorem for semi-dispersing billiards stated
in section 4.1. The conjecture will be proven for the utmost important special case of
semi-dispersing billiards with algebraic scatterers in section 5.

To help the reader understand why this ‘Lipschitz decomposability’ property is defined
exactly as it is, we present two more lemmas in this section. These are the lemmas through
which the decomposability of singularities will be used.

Lemma 3.8. Let H € R™ be a one-codimensional locally Lipschitz graph with H =
{(z,f(z)) |z € D}, D C R™ ! open, f : D — R locally Lipschitz with constant L.
Assume furthermore that L™ ((0H)) = o(5).

Let D' C D arbitrary, H = {(z, f(x)) | x € D'}. Then

£ (HP) <26V L2 +1Lm7" (D) + o(6).

2The delicate question how sensitive this notion of Lipschitz-decomposition is to the choice of the
atlas needs further investigation.
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Proof. Let zy € D, Xo = (zo, f(z0)) € H. If dist(xg,0D) > § then
Bs(Xo) C {(x,y) |z € D, dist(z, z0) < 6, [y — f(z)| < VIZ+ 1}

On the other hand, if d = dist(z9,0D) < § then there exists an z; € 0D with
dist(zg, z1) = d.

With this 1, for every 0 <t < 1 2y := tz1+ (1 —t)zy € D, otherwise dist(zy,0D) < d
would hold. The function g : [0,1) = R, g(¢) := f(z:) is Lipschitz with constant dL, so
g(1) == lim; ~ g(t) exists and |g(1) — ¢(0)| < dL.

Obviously X; := (z1,9(1)) € 0H and dist(Xy, X1) < dvL?+ 1. That is, Bs(Xy) C
B /t75i41)5(X1). Putting everything together, we have

()5 < {(e.) | @ € (D)0 D,y — (@) < SVIT+1} U (0H)VFTHI. - (32)
This implies
Lm ((HI)[é]) S 26 /L2 + 1[1m71 ((DI)[J]) +£m ((aH)[(\/LZ—H—H)é]) ]

This gives the statement of the lemma since £™~! ((D")¥)) = L™= (D’) + o(1) and the
second term is o(d) because of our assumption. O

In the next lemma, 7 will denote the projection of R™ to R™~! parallel to the last
axis: 7((x,y)) := x when z € R™! and y € R.

Lemma 3.9. Let H C R™ be a one-codimensional locally Lipschitz graph with H =
{(z, f(z)) |z € D}, D C R™! open, f: D — R locally Lipschitz with constant L. Let
d >0 and G C R™ be such that dist(G,0H) > (vVL?> +1+1)d. Then

L (HY'NG) <20V + 1L (7(@)) .

Proof. Let H' = H. (3.2) holds just like in the previous lemma. Since dist(G,0H) >
(VL? +1+1)6, this means that

HYAG {(x,y) |z e DNw(G), |y — f(z)| < 6VI2+ 1},

which gives the statement of the lemma. O

4 The Fundamental Theorem

This section is devoted to the fundamental theorem — or local ergodicity theorem — for
semi-dispersing billiards. The two-dimensional case had been settled in Sinai’s celebrated
work, [S(1970)]. Seventeen years had elapsed until the multidimensional generalization
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given by Chernov and Sinai appeared, [S-Ch(1987)]. It offered a quite involved, but in
essence very transparent formulation of the theorem and a delicate proof. A self-contained
exposition of the original ideas with detailed conditions and arguments were provided in
[K-S-S2(1990)] where a slightly more general, the so called “transversal” version of the
fundamental theorem was announced — mainly with its application to three-billiards
in mind. Several other papers have appeared in the 90s with nice expositions of the
theorem, even for classes of dynamical systems more general than the original semi-
dispersing billiard setting (eg. Hamiltonian systems with singularities in [L-W(1995)]).
However, all of these papers assumed that for all powers of the dynamics the singularity
set is a finite collection of one-codimensional smooth and compact submanifolds. Since,
as our counterexample shows, this is not the case, it became utmost necessary to replace
this assumption.

Throughout the section our main reference is [K-S-Sz(1990)]. Actually, our aim is to
demonstrate that it is possible to modify the proof presented there to the case when the
singularity sets are not smooth but just finitely Lipschitz-decomposable. After formulat-
ing the conditions and the statement of the theorem, we give a sketch of the proof (that
goes along the lines of [K-S-Sz(1990)]) and work out those parts in more detail, where
the original argument is to be modified. Our notations introduced mainly in section 2.1
coincide in almost all cases with those of [K-S-Sz(1990)] (we have just altered the original
conventions at some places for the sake of simplicity).

One more remark: following [K-S-Sz(1990)] the formulation of the theorem presented
here (the ‘transversal’ fundamental theorem) is slightly more general than the one usually
referred to in the literature.

4.1 Formulation of the theorem

Before its formulation its is important to point out the conditions under which the
modified proof of the theorem works. We use the notations introduced in section 2.1.

Condition 4.1. (Chenov-Sinai Ansatz, Condition 3.1 from [K-S-Sz(1990)]). For vg+-
almost every point v € R we have x € OM* and, moreover, the positive semi-trajectory
of the point = 1is sufficient.

What follows below is our new condition — Lipschitz decomposability — on singulari-
ties. In the original proof smoothness was assumed, even though it was only formulated
as a condition for the set of double singularities — see Condition 3.3 from [K-S-Sz(1990)]).

Condition 4.2. There exists an L € R such that for every N € N the singularity set

U R™ is ‘Lipschitz decomposable’ with constant L (cf. Conjecture 3.7).
In|<N

Some remarks.

e For the set of singular reflections itself the original property remains true: R is a
finite collection of smooth compact manifolds of codimension 1.
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e Condition 4.2 can only be satisfied by semi-dispersing billiards with a finite horizon.
However, the infinite horizon case can easily be reduced to the finite horizon case

(cf. [S-Ch(1987)], [K-S-Sz(1990)].

e As to the original exposition, one more condition was assumed on the geometry
of the scatterers (the regularity of the set of degenerate tangencies - Condition
3.2 in [K-S-Sz(1990)]). However, the role of this condition was to guarantee that
points belonging to two different smooth components of the singularity set belong to
finitely many codimension 2 submanifolds. Now instead of smooth components we
have locally Lipschitz graphs and it is enough to require that the §-neighbourhoods
of their boundaries have a volume of o(¢), which is a little less than being two-
codimensional (cf. Definition 3.5).

To formulate the fundamental theorem, we introduce the notion of regular coverings.
Note that m = 2d — 2 is the dimension of the (Poincaré) phase space OM. The next
definition will not be absolutely precise, for we omit some technical details for the sake
of easyer understanding. For a precise formulation please see Definition 3.4 in [K-S-
Sz(1990)]).

Definition 4.3. Let us assume that for a point © € OM* and its neighborhood U(x)
a smooth foliation U(x) = Ugepi-1lq is given. The foliae Ty are d — 1-dimensional
manifolds uniformly transversal to all possible local stable manifolds (B! is the standard
d — 1-dimensional open ball).

The parametrized family of finite coverings

F={G|i=1,..,1(6)} 0<é6<d
15 a family of reqular coverings iff:
1. each G? is an open parallelepiped of dimension 2d — 2;

2. the d — 1-dimesional faces of G? are all cubes with edge-length &, moreover, they
may belong to two different categories: the s-faces are ’parallel with leaves of the
stable foliation’ while the I'-faces are ’parallel’ with the leaves of the foliation T';?

3. For any point, the mazimal number of parallelepipeds covering it is 22¢72;

4. if GINGS #£0, then
(G NGY) > 8%

with ¢; independent of 9.

[

3More precisely if we consider the center of each parallelepiped w € G¢, the s- and T'- faces are

parallel with the tangent planes T, sv*(w?) and 7T,,sT(w?), respectively.
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Some further convention: Given any G? its s-jacket, 0*(G?) is the union of those
(2d — 3)-dimensional faces of G¢ which contain at least one s-face of it. The I'-jacket,
0" (@?) is defined similarly. Clearly, 9(G?) = 0°(G?) U 8" (G?). We say that a stable
manifold v*(y) intersects G¢ correctly if:

0(G; N7’ (y)) € " (GY).

Theorem 4.4. (The Fundamental Theorem) We assume that:

- conditions 4.1 and 4.2 are satisfied;

- a sufficient phase point x € OM™ s given;

- a smooth transversal foliation I' in a neighborhood Uy of x is fized;
- a constant 0 < ¢; < 1 18 chosen.

Then there is a sufficiently small neighborhood Ue, (x) such that for any U(z) C U, (x)
and for any family of reqular coverings, the covering G° can be divided into two disjoint
subsets, gg and G! (called ‘good’ and ‘bad’), in such a way that:

(I) For any G¢ € Qg and any s-face E* of it, the set:

{y € GY | ply, E*) < 16 and +*(y) intersects correctly}

has positive relative py-measure in Gf .

(1)
1 U G| = o(5).

é 8
Gieg?

Remark:

— With suitable modifications of the proof the theorem applies to all sufficient points
x € OM* (see [K-S-S5z(1990)]), however, for simplicity here we restrict ourselves to regular
phase points.

4.2 Proof of the Fundamental Theorem

Here we would like to give a sketch of the proof following [K-S-Sz(1990)]. For brevity
we do not repeat the whole argument. Our aim is to emphasize the main ideas on
the one hand and point out those parts where the original proof is to be modified on
the other hand. Several arguments apply word by word, as to these, we do not give an
exposition, just refer to the original paper. Those steps that need non-trivial modification
are emphasized and worked out in detail.

Throughout the section we think of the sufficient point z € dM?° and its neighborhood
U as being fixed. y usually denotes some point in U. Furthermore, a sufficiently small §
is kept fixed - thus we work with one particular covering G°. Of course, for every G¢ € G°
we have diam(G?) < md where m = 2d — 2 is the dimension of the phase space. As a
preparation for the main argument we state two important Lemmas:
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Lemma 4.5. In correspondence with condition 4.2 let us denote the Lipschitz compo-
nents of Ujp<yR" with R; (i = 1,..., K), rest with R*, and the Lipschitz-constant with
L. Consider the set

For all N:
i (Asn) = 0(d).

This Lemma plays essentially the role of Lemma 4.6 from [K-S-Sz(1990)]. However,
the proof of it is the first point where the original proof of the fundamental theorem had
to be modified.

Proof. Fix an index ¢ and find a coordinate system so that

= {(z, fi(x))| =z € D;}.

where D; C R™™L. 7; shall denote the usual projection onto R™~!: m;((x,y)) := z, when
r € R™! and y € R. Obviously D; = m;(0R;), so L™ ((6Ri)[6]) > 26L™1(0D;). So
the condition £™ ((0R;))) = o(6) implies L™ (0D;) =

As a consequence for any 1 > 0 it is possible to find " > 0 such that the (closure of
the) open n'-neighbourhood of dD; inside D; has £™ !'-measure smaller than 7. Let us
denote this open neighborhood by Df7 and furthermore

AL = {(a, fi(x) | = € D}

Now consider the parts of the singularity far away from the borders of the singularities.
For different i-s the sets R; \ A% (1t = 1,...,,K) are pairwise disjoint compact sets (as
they are continuous images of compact sets). Consequently, for 6 small enough the sets
(Ri \ A!)l) are pairwise disjoint as well. Now for the set mentioned in the Lemma, we
can write:

Asy C ATy (R7)1

where A, = U Al
Now apply Lemma 3.8 to get
L™ (AN < 2v/L2 + 16n + o(5)

This means that

Lm( N < 2KVL2 + 161+ 0(0)

stand for every 7, meaning that Em(AL,J]) = 0(6). Together with L™((R*)() = o(6) this
gives the statement of the lemma. O
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Before formulating the other key Lemma we would like to note that — for Lipschitz-
continuous functions are differentiable almost everywhere — in almost every point of a
singularity component (i.e. in one particular open locally Lipschitz graph 7%) it makes
sense to talk about their (one-codimensional) tangent planes 7;7% Knowing the be-
haviour of the tangent plane wherever it exists allows us to think about the “direction”

A

of the whole R.

Lemma 4.6. Given any x € OM° and any € > 0 there is a neighborhood U(z) C OM
of x such that for every ~v;,~s and any (2d — 3)-dimensional Lipschitz component R of
some R™ (n > 0) intersecting U(x) with points Y1,y and 4, lying on the three manifolds,
respectively, so that 7;7% erists:

€. (4.1)

This Lemma is on the parallelization effect and it is exactly the same as Lemma 4.9 in
[K-S-S2(1990)]- the original argument applies. Nevertheless it might be useful to point
out what the second inequality in (4.1) means: there is a (d — 1)-dimensional subspace of
the tangent space at almostany point of the (2d — 3)-dimensional manifold R very close
to the stable subspace. Note, however, that R may behave extremely widely —i.e. in a
non-smooth manner — in the remaining (d — 2) dimensions (in case d > 3).

Before the proof we should introduce some more notation. The following two quan-
tities measure the hyperbolicity near the point y € OM°. Let

Fdn,o(y) = 1121:f ”(DET"y,E)_lngjlv

where the inf is taken over all convex local orthogonal manifolds passing through —7"y.
Furthermore denote

Ana(y) = inf inf [[(D5) [,
Here the infimum is taken for the set of convex fronts 3 passing through —7™y such that
(i) T™ is continuous on ¥ and (ii) 7Y C Bs(—y).-

Remark 4.7. (cf. Lemma 5.3 in [K-S-Sz(1990)]and Lemma 2.2 in the present paper)
It is not difficult to see that kns(y) is an increasing function of n. Furthermore, for
sufficient points y clearly:

lim &, 0(y) = oo.

n—00
(Here we do not state in general that kno grows exponentially, linear growth — which is
obuvious for sufficient points y — is well enough.)

The following subsets of the neighborhood U > = depend on the constant ¢.

U9 = {yeU|Vn€Zy, zuwTy) > (/in,%(s(y))_l(:?,(s};
U = U\UY%
Uz = {y eU |Ztub(Tny) < (Hn,csd(y))_lc35} (42)
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Remark 4.8. Note that for the points y € UY the stable manifold extends to the boundary
of Be,s(y), the ball of radius csd around y (cf. Lemma 5.4 from [K-5-52(1990)]). The
constant c3 will be chosen in an appropriate way to guarantee that for any y € U9 N G2
the stable leaf v*(y) intersects G2 correctly unless it intersects 0°GY.

Furthermore, we introduce the class of permitted functions.

Definition 4.9. A function F' : R, — 7Z, defined in a neighborhood of the origin is
permitted whenever F(§) /' 0o as 6 \ 0. For a fized permitted function F(§) we define
U = Unsr)Up.

Most of the statements to come hold for any permitted function F'(§). At one point
of the argument we shall fix one particular F(J).

Lemma 4.10. (Tail bound; Lemma 6.1 from [K-S-Sz(1990)]). For any permitted func-
tion:
m(Ug) = o(0).

The measure estimates in the proof of the Tail Bound are related to R, the set of
singular reflections. As already mentioned, this set (in contrast to the higher iterates
R™) is a finite collection of smooth and compact 1-codimensional submanifolds of the
phase space. Consequently, there is no need for Lipschitz decomposition here, thus we
do not include the proof. Essentially, the original argument from [K-S-Sz(1990)]applies,
nevertheless, at the definition of the small set of non-sufficient points a little more care
is needed. We would also like to emphasize that the proof of the Tail Bound is the
point where the Chernov-Sinai Ansatz (Condition 4.1) is exploited. On more details see
[K-S-Sz(1990)].

Remark 4.11. In what follows we will work with distances defined by the FEuclidean
metric p. However, as the interior point x in OM is fized and its neighborhood U(x) is
fized we have [{v,n(q))| > ¢ for some positive constant ¢ = c(x) in this neighborhood.
Thus the two distances p and rho; are equivalent (cf. section 2).

Now we can start proving the fundamental theorem by telling explicitely how the
collection of parallelepipeds G° is divided into a good and a bad part. We say G¢ € G iff

(A) either
e it intersects more than one Lipschitz component of the singularities of T,
e or it intersects only one component R, but p(G¢, dR) < 4,

e or it intersects the remaining small set R*.

(B) or it is not of type (A), but it has an s-face E® such that
€
(Gl N (B9 ny,,) < Z?’ul(Gf), (4.3)
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where €3 is a positive constant to be defined later and Uy, is the set of points in G¢ with
correctly intersecting local stable manifolds.

Now we choose one particular permitted function F'(§): by virtue of Lemma 4.5 there
definitely exists a permitted function such that:

p1(Awmi1ysre) = 0(9)- (4.4)

As a consequence the overall measure of bad parallelepipeds of type (A) is o(d) (such
parallelepipeds lie inside the set Ay, 11)5,r(s))-

It is time to tell about the choice of our small constants ¢; as well. In the formulation
of the Fundamental Theorem one particular constant €; is given. We shall choose three
further constants in the following order: €; — €3 — €4 — €5. It is utmost important that
all of these choices are independent of 6. (they are chosen in the arguments below, €5 in
1., €4 in 2. and €, in 3.). After all these choices are made we fix the neighborhood U, (z)
(see the formulation of the Fundamental Theorem) in such a way that for all Lipschitz
components R of some R™ (n > 0) that intersect U,, (z):

<7i,7) < e,

Such a choice is clearly possible by virtue of Lemma 4.6. Here the sevond inequality is
understood at every point of R where it makes sence, that is, where R is differentiable.
One more remark: having fixed the neighborhood U,, (z) and the foliation I" uniformly
transversal to the stable foliation, it is possible to uniformly compare two different mea-
sures for each product-type set inside U, (x). More precisely there is a constant ¢4 > 0
such that given any product-type set, the ratio of its u;-measure and its measure that
arises as a product of measures in the s— and I'—directions lies between c¢;* and c;.

From now on G?¢ will always denote a bad parallelepiped of type (B). The proof of
the Fundamental Theorem follows from the small arguments to come.

1. Let us first give an estimate from below on the measure of G¢N (E*)1% where E® is
an s-face for the bad parallelepiped G2. By the above remark on product measures:

m(GE N (E°)%) > et (0) 108 > coel M (GY) 2> e (GY), (4.6)
in case €3(€1) is chosen sufficiently small.

2. For estimates from above we fix the constant e, = €4(e3) sufficiently small. The
measure of points near the s-jacket (which consists of 2(d — 1) faces of dimension

2d — 3, is:

M1 (Gf N (BSG;;)[“J]) S 2(d - 1)04645(52(173 S %,Ltl (Gf) (47)
We need one more estimate of similar type. This is the second point where the
original proof has to be modified, and the smoothness/Lipschitzness of singularity
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components is used. Recall that for a bad parallelepiped of type (B) there is at
most one Lipschitz component R of the singularity set for 79 intersecting it. We
are interested in estimating the measure of the e,0-neighborhood of this Lipschitz
graph inside the parallelepiped. If ¢4 < ﬁ (L is the Lipschitz-constant) then,
by the construction of type (A) paralellepipeds, Lemma 3.9 can be applied, and
gives

1 (G2 N (R)4) < 54062473 < 1 pl(G"s) (4.8)

whenever again €4(e3) is small enough.

3. Now we choose €;(¢€,4) small enough, so that by (4.5) stable manifolds and singularity
components are ‘almost parallel’. Namely, the smallness of €3 should guarrantee
that for any y € G? for which v*(y) does not intersect correctly we have:

y € (GIN(R)“T) U (GI N (&G U . (4.9)

To see that, given a suitable choice of €5, the above formula is valid we make two
remarks.

e First we note that for stable manifolds and singularity components ‘not to
approach each cher too quickly’, being ‘almost parallel’ is enough at almost
every point of R.

e Recalling the definitions from (4.2) and the various notions of distances from
section 2 what we see immediately is that the inclusion of (4.9) is valid with
writing G? N (Up<rs)UL) instead of G2 N R4 for the first set. Nevertheless,

with a suitable choice of €, we certainly have G¢ N (R%) ¢ G N (U< <r)UY)
as (i) zwp(z) > z(x) and (ii) the Euclidean distance p and the distance p; (in
terms of which z(z) is defined) are equivalent, see Remark 4.11.

We only need some minor considerations to complete the proof. Observe first that
for good parallelepipeds the statement (I) evidently holds. As for (II) we have already
shown that bad parallelepipeds of type (A) are of measure o(d) (recall (4.4)), we shall
show the same for those of type (B) as well. Indeed, let us consider a G¢ with an s-face
E* for which (4.3) holds. By the arguments 1.-3. above:

€
(G NUY) > (G N (BT nUd) > :Ml(Gf)-
Now recall that in a regular covering there are at most 22¢=2 parallelepipeds with a

non-empty common intersection. Thus:
d— b s b €3\~ §
P (U) > 3 (G > Y (G,

where Z’ denotes the sum over bad parallelepipeds of type (B). By the Tail Bound
(Lemma 4.10) we have ' 111(G?) = o(8) thus the proof of Theorem 4.4 is complete.
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5 The case of algebraic scatterers

The main aim of this section is to show that the singularity submanifolds of algebraic
semi-dispersing billiards satisfy the Lipschitz-decomposability property formulated in
Conjecture 3.7. Fortunately, the most important examples of semi-dispersing billiards
are algebraic as it has been noted in the introduction. Consequently, the algebraicity
condition does not essentially restrict the applicability of the fundamental theorem.

For definiteness we will say that the zero-set of a system of polynomial equations is an
algebraic variety (we will use these notions over the real ground field). Any (measurable)
subset of a k-dimensional algebraic variety will be denoted as a k-dimensional SSAV
(for ‘subset of an algebraic variety’). As for the dimension of an algebraic variety, see
[Sh(1974)]. We also use the following definition.

Definition 5.1. A semi-dispersing billiard is algebraic if it has finitely many scatterers
and the boundary of each of these scatterers is a finite union of one-codimensional SSAV-s
(as subsets of T C R?).

Remark 5.2. Assume, in general, that we are given a Riemannian manifold M = M,,
and a subset A C M. We say that A is a k-dimensional weakly algebraic subset of
M if it is possible to find an appropriate atlas {Uy, v}, on M such that, for every
t, hy(UyNA) (C R™) is a k-dimensional SSAV in R™. Bi-Lipschitzness of the atlas
{U, 0 }1_, can always be assumed (cf. Remark 3.6)

Note that being ‘weakly algebraic’ is really a weak notion due to the high degree of
freedom in the choice of the atlas. For example, every smooth curve is 1-dim. weakly
algebraic.

What follows below in three subsections is a proof of Lipschitz decomposability for the
singularities R™" in an algebraic billiard. In subsection 5.1 it is shown that singularities
are algebraic as subsets of R?*¢. This implies that R™ C OM is algebraic in the sense
of Remark 5.2 as well. * The proof is completed in subsections 5.2 and 5.3 where a
Lipschitz decomposition is constructed for any (one-codimensional) SSAV of R™.

5.1 The algebraicity of R™"

Our approach generalizes that of section 3 of [S-Sz(1999)]. Since there a detailed exposi-
tion was given, here we are satisfied by referring to the main steps of the complexification
of the dynamics. Still we completely explain those parts where our arguments are differ-

ent.
In a nutshell the picture is the following. In [S-Sz(1999)]

e the authors were only considering quadratic boundaries since hard ball systems are
quadratic billiards;

*In a small neighbourhood of y € M identify the tangent plane 7,0M with R™ and restrict the
orthogonal projection II : R?? — 7,0M onto M to obtain coordinate charts.
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e and for the quadratic case they elaborated a most detailed algebraic analysis of the
situation.

Here we do not need such a delicate picture. But on the other hand, we are treating
the general algebraic case. The chain of field extensions of [S-Sz(1999)] relied upon the
explicit solvability of the arising quadratic equations and applied the related elimination
of the square roots. In the general case we rather apply the norm used in Galois theory.

We first fix some notation — slightly different from the usual conventions — at this
point. According to the definition above, 0Q) = U;-’Zl(?Qj, where both the components
0Q; and their boundaries are all appropriate dimensional SSAV-s (the decomposition is
finer than the one into connected components in R%). In other words, for each 9Q); there
is a (non-zero) irreducible polynomial B;(g) such that

an C {q € R¢ | B](q) = O}

Note that symbolic collision sequences (5.1) are defined in terms of these algebraic bound-
ary components as well.

From this point on it will be suitable to consider orbit segments SI®lzo, T > 0 of the
billiard flow with 7" sufficiently large. In fact, it will be useful to also drop the condition
|lv|]| = 1. Consequently, the dimension of our phase space will be 2d (first the phase
space will be T x R? and later just R?®).

The symbolic collision sequence of S(%7lzy will be denoted by

0= E(S[O’T]x()) = (0170-27"'7Gn) (n 2 0) (51)

Remark 5.3. By definition, (qq,vo) corresponds to the initial, generally noncollision
phase point xo of the flow. Furthermore T*zq = x), = (qi, v) € 0Q,, for everyl <k <n
(we note that for a phase point xo ¢ OM of the flow Txy € OM coincides by definition
with the first point where the positive semi-orbit of xy reaches the boundary OM; in
[K-5-52(1990)] this map was denoted by TT). By a slight abuse of notation we will
keep denoting by R™" (introduced in subsection 2.1) the nth inverse image of R in a
2d-dimensional neighbourhood of xo .

Having fixed o, we first explore the algebraic relationship between the consecutive
xgs. For being able to carry out arithmetic operations on our data, we lift the genuine
orbit segment to the covering Euclidean space of the torus. This can be done by a
straightforward generalization of the trivial Propostion 3.1 of [S-Sz(1999)].

Proposition 5.4. Let S[%Tlz be an orbit segment of the discretized dynamics. Assume
that a certain pre-image (Euclidean lifting) o € R® of the position qo € T is given.
Then there is a uniquely defined Euclidean lifting {G; € R?|0 < k < n} of the given orbit
segment which, when considered in continuous time, is a time-continuous extension of
the original lifting §o. Moreover, for every collision oy there exists a uniquely defined
integer vector aj, € Z® — named the adjustment vector of o), — such that

By, (G —ax) =0 (1 <k <n).
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The orbit segment © = {Gx|0 < k < n} is called the lifted orbit segment with the system
of adjustment vexctors A = (ag, . ..,a,) € Zr+Dd,

In the sequel, <, > denotes Euclidean inner product of d-dimensional real vectors. Our
next proposition is also a straightforward extension of Proposition 3.3 of [S-Sz(1999)].

Proposition 5.5. Between the kinetic data corresponding to ox_1 and oy one has the
following algebraic relations:
— the linear collision equation

Vp = Vg1 — 2 < Up_1, Ny > Ny, (1<k<n) (5.2)

where ny, is the outer unit normal vector of the scatterer Q,, at the point of impact;
— the linear free flight equation

Gk = Qr—1 + TkVk—1 (1<k<n) (5.3)

— where the time slot 7, = ty—tx—1 (to = 0) in (5.3) is determined by the polynomial
equation
Bg, (Gk 1 + Tkvr-1 — ag) = 0. (5.4)

Next we turn to the complexification of the billiard ball map 7. Given the pair
(3,A) = (01,09,...,04; 00,01, - ., 0y), the equations (5.2), (5.3), (5.4) make it possible to
algebraically characterize the kinetic data (g, vx) by using the preceding data (Gx_1, vg_1)-
Since — at the moment — we are dealing with genuine, real orbit segments, in this
situation the equations have at least one positive, real root 7; in case of several such
roots its selection is unique by the geometry of the problem. Our further arguments,
however, also use the algebraic closedness of the arising fields and therefore we complexify
the dynamics. From this point on, our approach, though related but nevertheless will
already be different from that of [S-Sz(1999)].

Definition 5.6. For n = 0 the field Ky = K(0;0) is the transcendental extension C(B)
of the coefficient field C by the algebraically independent formal variables

B = {(G);, (vo);[1 <j < d}

Suppose now that the commutative field K, 1 = K(X'; A’) has already been defined, where
¥ =(o1,09,...,0n01); A" = (ag,01,...,a, 1). Consider now the polynomial equation

bt b by =0 (5.5)

arising from (5.4) with k=n. It defines a new field element 7, to be adjoined to the field
Kn_1 (of course, by,...,b € K,_1). At this point, however, we should be a bit cautious.
If the equation 5.5 is irreducible, then all its roots are algebraically equivalent, and 7, can
denote any of them. If (5.4) is reducible, then we should select a particular irreducible
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factor of its. Indeed, since we are only interested in the images of R, at each step we
choose such an irreducible factor of (5.5) which, when its root T, gets evaluated for real
values of xg, gives us a real root of (5.5) which is actually the real root specified after
(5.4). This irreducible factor defines the extension K, =K, 1 (7,).

In such a way we are given a chain of extensions Ky, Kq,..., K, where for every
k=1,...,n the relation Ky = Ky_1 (1) holds. By our construction and by the theorem
on the prime element of algebra, K, can also be expressed as Ko(7,) for some 7, € K,
with minimal polynomial m(«) over K, .

By applying the previous construction we are going to look for an algebraic charac-
terization of R™".

For every 2y € My 4 = {z € M | £(SP"lz) = B, A(S*T]z) = A} one has G, € K,.
Gn can formally be understood as a function G, (x¢,71,...,7,) or (by the theorem on the
prime element) simply as a function §,(xg, 7,) with values in K,,. We will be considering
this function exactly in My 4, that is, where ¥ and A are constants. Consider @),, at
the point S"zo. At this point the submanifold B, (¢, — a,) = 0 has a normal vector
7 which can be expressed by the partial derivatives of B,, at ¢, — a,. The condition
T, € R just says that < 11, v,, >= 0. Here both 77 and v,, are elements of K,,, i. e. formal
functions of =y and 7,,. Consequently < 7, v,, >= ®(7,,) where ® is a polynomial whose
coefficients are rational functions over Ky. Take now the (Galois-) norm (cf. [St(1973)])
of this element i. e.

|| = ()

where the product is taken for all roots 7% of the irreducible polynomial m. This norm
does not vanish since it is the product of non-zero elements in the normal hull of K,.
Moreover, it is a symmetric polynomial of the elements 7:. As such it can be expressed
as a polynomial of the elementary symmetric polynomials of the variables 7 : 1 < 4 <
[. These elementary symmetric polynomials can, however, be easily expressed by the
coefficients of m which are elements of K;. As a consequence, we obtain a non-zero
element in Ky. The construction just described generalizes the elimination of the square
roots method applied in [S-Sz(1999)]. By our construction it remains also true that this
polynomial has real coefficients for our real, dynamical orbit. All in all for every fixed X
and A the resulting piece of R~ is an algebraic submanifold. From the finiteness of the
horizon it is clear that in the case of our real dynamics only a finite number of ¥ and A
provide a non-empty piece of R™".

In this way we have established

Theorem 5.7. R is a finite union of one-codimensional SSAV-s in R??.

5.2 Dimension and Measure of Algebraic Varieties

The motivation for this section is that we need to estimate the Lebesgue-measure (denoted
here by £™) of the d-neighbourhood of an algebraic variety . Actually we only need that

27



L™(HP) = o(6) if H is (at least) two-codimensional, but our resuts will be more general
than that.

As we will see, this problem is closely related to the box dimension of H (on Hauss-
dorff, box dimensions and related issues cf. [P(1997)]). To start, let us recall some
well-known notions and basic facts related to box dimension.

Definition 5.8. Let H be a bounded subset of R™, 0 < d € R. Then the quantities

_ m ( [ 19]
Md(H) := limsup Ld),
d—0 om=
L (HY)

d N .
M (H) = llgrilglf Sm—d

are called the upper and lower d-dimensional Minkowski-content of H.

Definition 5.9. Let H be again a bounded subset of R™, € > 0. The set I C H 1is called
an e-net in H if H C I

We will always be interested in finite e-nets I, and we will never use that I C H.
Some simple facts:

(b) HI(H) < M*(H) < M"(H)

(¢) If M (H) < oo, then dimpH < d
(d) If dimyH < d then H4(H) =0

e) If M(H) < oo then £L™(H) = O(6™ 9.

)
)
(e)
(f) If I is an e-net (finite) in H € R™ then £™(HE!) < (2¢)™|I|, where |I| is the
cardinality of I.

Now we turn to the investigation of algebraic varieties. Our proposition will be an
easy corollary of the following lemma. For 0 < d € R we will denote the d-dimensional
Hausdorff-measure by #¢.

Lemma 5.10. Let H = H N [0,1]", where H is an_algebraic variety. Let k be the
mazimum of the degrees of the polynomials defining H. Let ¢ > 0, 0 < d € Z. Let

¢ > 1 arbitrary. We claim that if H*T1(H) = 0 then, if € is small enough, there ezists a
(d-e)-net I in H with

i m) 3/2 1
I < Npdke = o KM=

=0
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Proof. The proof goes by induction on d, and the induction is based on the following
Fact: For every z € [0,1] let H, = H N ({z} x [0,1]™"!). Then H*'(H) = 0 implies
that for Lebesgue almost every x € [0,1], H%(H,) = 0. For a proof see [Fa(1985)].

The same is true for subsets of H arising by fixing another (than the first) coordinate:
for every 1 <1 < m if P\ :=[0,1]""! x {z} x [0,1]™ " and H! := P. N H then we have
HI(H!) = 0 for L'-a.e. . We will take advantage of this by choosing &' arbitrary
(later on we will fix &' = ﬁ) and fixing K < 5 points: 0 = z;; < ... < 21,5 = 1,
such that z; ;41 — 2;; < €' and ’Hd(Hil}j) = 0 for every j. The m - K hyperplanes
P, i:1l=1,...,m, j=1,...,K cut H into blocks of diameter < ¢'\/m.

Notice that if H has a point A in any of these blocks, then either it also has one (B)
on the surface of the block, so that dist(A, B) < &'y/m, or the entire component of H
containing A is inside the block.

1.) We start the induction with d = 0. The previous constrution gives (for any &)
”HO(HQICLJ_) = 0, that is, Hf”,j = () for every [, j. That is, the components are points, and
we can certainly find the 0-¢ = 0-net [ = H with |I| < k™ = N, 0., an upper bound
for the number of components comming from Bezout’s theorem..

2.) Suppose we have the statement for some d — 1 > 0.

3.) We prove for d. That is, H C [0,1]™, H*'(H) = 0. Apply the previous

construction with ¢’ = . The set H] , is now an algebraic variety in [0,1]™" 1 the
polynomials defining it can be derived from those defining H by fixing a variable. So the
degrees can not grow. We can use the inductive assumption for the mK < mc‘/f sets

Hil’j with m — m—1 and the same k. Thus taking a (d—1)e-net on every Hi,,j according
to the inductive assumption, and choosing a point from every component that happens
to be entirely inside a block, we get a d-e-net [ in H with || < mc‘/_N a1 ke tE” =
Nm,d,k,s H

This lemma leads to the following

Proposition 5.11. If H = Hn [0,1]™ where H Cc R™ is an algebraic variety, and k
is the mazimum of the degrees of the polynomials defining H, then s := dimg(H) =
dimg(H) € Z and

. | 3/2
0 < H*(H) < M*(H) < M°(H) < 2™s* (%) T < oo (5.6)
m — s)!
Proof. By (b) we have H*(H) < M*(H) < M’(H). On the other hand, if we choose
d € Z in such a way that H%!(H) = 0 then by the Lemma for any ¢ > 1:
——d, o def . mglacly () £)™ Ny a e L€MMA
M (H) E limsup, o S22 < limsup, o P20 Tmie (5.7)

L\ 3/2 .
= lim sup, _,, 2™d%c dzz 0 ( - = ) km—igd—i =

3/2
= ci2mdd ((nﬁd)!) k™= < oo.
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By (c) and (d) this implies dimp(H) < d if s < d+1 (or even if H*™'(H) = 0).
This contradicts (a) unless dimg(H) = s € Z (or even if H*(H) = 0). Now with d = s
(5.7) implies the right end of (5.6). O

Corollary 5.12. If H is a bounded subset of an (at least) two (algebraic) codimensional
algebraic variety in R™, then L™(HP!) = o(9).

Proof. Knowing from [F(1969)] that the algebraic and Hausdorff dimensions coincide,
the proposition actually gives M™ *(H) < oo which means (by (e)) that £™(HU) =
0(6?). O

5.3 Lipschitz decomposability of algebraic varieties

In this subsection our aim is to establish the fact that one-codimensional SSAV-s possess
the finite Lipschitz decomposability property (in the sense of Definition 3.5). Having
already shown the algebraic nature of R_,, this way we find that algebraic billiards
satisfy Conjecture 3.7. The main result of the subsection is:

Theorem 5.13. Any one-codimensional algebraic variety H is Lipschitz decomposable
(in the sense of Definition 3.5) with any constant L > 0.

In the following, 7 shall denote the standard projection of R™ to R™~!. That is,
n(z,y) =z forany z e R" ! y e R

Proof. We construct the decomposition of H. Fix an arbitrary L > 0. Let I(H) denote
the ring of polynomials vanishing on H. Let H* be the set of points in H where the
gradient of every polynomial in I(H) vanishes. We know from [B-C-R(1987)] that this
set at least two (algebraic) codimensional, so Corollary 5.12 ensures that H* is good (for
the purpose of Definition 3.5). For the points x € H \ H*, there is at least one P € I(H)
for which gradP(z) # 0 and the gradients of all polynomials in I(H) are parallel to
gradP(z). In the following we will assume H = {z|P(z) = 0} for one such P, only for
the sake of more transparent notation.

Fix a finite collection of unit vectors vi,...,vx in R™, such that for any nonzero
vector v € R?, there is a v; for which tan(<(v,v;)) < L' < L. We shall identify those
components of H that are Lipschitz graphs as viewed from the direction v;. We will omit
the index i. The construction clearly depends on the vector v = v;. Having fixed v it is
possible to choose an orthogonal coordinate system in R™ such that the mth base vector
points in the direction v. For arctan(L’) < ¢ < arctan(L) and h = cos(¢), consider the
following subset of the algebraic variety:

H<® = {z¢€ H |«(gradP(z),v) < ¢} = (5.8)
_ {x cH | (%P(@)? > hQ(gradP(:v))Q} .
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Note that H<? N H* = (), because the inequality in the definition of H<? is strict. We
claim that for almost every possible ¢, 0H<? is two-codimensional. Indeed,

OH<? Cc H=? := {:c € H | (%P(m))Q = hQ(gradP(:c))Q} :

The intersection of H=%-s corresponding to different ¢-s is H*, which is two-codimen-
sional, so its one-codimensional Hausdorff-measure is zero. However, Proposition 5.11
says that the union of all H=%-s (which is part of H) has a finite one-codimensional
Hausdorff-measure. So apart from a countable number of ¢-s, the one-codimensional
Hausdorff-measure of H=? is zero. Since H=? is algebraic, Proposition 5.11 tells us that
almost every H=? is two-codimensional.

We fix H' = H<? with one such arctan(L') < ¢ < arctan(L).

We will cut H' into locally Lipschitz graphs. Let k : R™~! — N be the multiplicity
of w(H'). Clearly for every x € w(H') the restriction of P to m~!(x) is nonzero, so k is
bounded by the degree of P, and the Implicit Function Theorem implies that it is lower
semicontinuous. So, the set D; C R™~! where k is maximal, is open. Here we can define
the finitely many functions fi1,..., fi km. : D1 — R taking the least, second least, ...,
greatest element of 7 !(z) for some x € D;. the Implicit Function Theorem implies that
these functions are locally Lipschitz with constant L and that their graphs are disjoint.

Now we claim that the boundary of these graphs is two-codimensional. Indeed, H=? is
two-codimensional and algebraic, so m(H=?) is also part of a one-codimensional algebraic
variety in R™~!. The pre-image (by 7) of this variety is one-codimensional in R™, and the
boundary of our graphs is on the intersection of this pre-image with H. This intersection
is transversal (ensuring two codimensions) at points of H'\ H*, and the rest of the
boundary is in H*.

Now erase the closure of these graphs from H’. So the argument can be repeated
with k,,., already at least one less. The procedure ends in finitely many steps, and so
finitely many open locally Lipschitz graphs are constructed. Their closures cover H' by
construction, and their boundary is two-codimensional.

We carry out this construction for every v;, and get a covering of the entire H \ H* by
finitely many locally Lipschitz graphs. To get the sets Hi,...,Hy in Definition 3.5 we only
need to make these graphs disjoint by substracting the closure of one from the other. [
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