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Abstract: Motivated by the 2D finite horizon periodic Lorentz gas, soft planar billiard
systems with axis-symmetric potentials are studied in this paper. Since Sinai’s cele-
brated discovery that elastic collisions of a point particle with strictly convex scatterers
give rise to hyperbolic, and consequently, nice ergodic behaviour, several authors (most
notably Sinai, Kubo, Knauf) have found potentials with analogous properties. These
investigations concluded in the work of V. Donnay and C. Liverani who obtained gen-
eral conditions for a 2-D rotationally symmetric potential to provide ergodic dynamics.
Our main aim here is to understand when these potentials lead to stronger stochastic
properties, in particular to exponential decay of correlations and the central limit the-
orem. In the main argument we work with systems in general for which the rotation
function satisfies certain conditions. One of these conditions has already been used by
Donnay and Liverani to obtain hyperbolicity and ergodicity. What we prove is that if, in
addition, the rotation function is regular in a reasonable sense, the rate of mixing is expo-
nential, and, consequently the central limit theorem applies. Finally, we give examples
of specific potentials that fit our assumptions. This way we give a full discussion in the
case of constant potentials and show potentials with any kind of power law behaviour at
the origin for which the correlations decay exponentially.

1. Introduction

Consider the planar motion of a point particle in a periodic array of strictly convex
scatterers. Interaction with the scatterers is in the form of elastic collisions, otherwise
motion is uniform. This dynamical system, the planar Lorentz process is a paradigm for
strongly chaotic behaviour. Among other important properties ergodicity ([Si2, SCh])
and exponential decay of correlations ([Y, Ch]) have been proven for the corresponding
billiard system.
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In this paper we consider the following natural modification. The scatterers are no
longer hard disks, the point particle may enter them. The particle moves according to
some rotation symmetric potential which vanishes identically outside the disks.

Even the issue of these softened Lorentz processes has a large amount of literature.
Results point in two different directions. On the one hand, for quite general softening
of the potential, the chaotic behaviour is no longer present. Stable periodic orbits and
islands appear in the phase space. This is generally the case with smooth potentials, see
[RT, Do2, Do1] and references therein.

However, in many cases, especially when the potential is not C1, the chaotic behav-
iour persists1. The investigation of such soft billiards dates back to the pioneer works
of Sinai ([Si1]) and Kubo et al. ([Ku] and [KM]). There are two different approaches
present in the literature to this hyperbolic case. On the one hand, under conditions
on the derivatives (up to the second) of the potential the Hamiltonian flow turned out
to be equivalent to a geodesic flow on a negatively curved manifold. This point of
view is especially suitable for potentials with Coulomb type singularities, see [Kn1] for
details.

The approach we follow is to study dynamics as a hyperbolic system with singular-
ities. [M] and, especially, [DL] – which is one of our main references – are written in
the spirit of this principle. Actually, in most cases it is convenient to study the discrete
time dynamics, a naturally defined Poincaré section map of the Hamiltonian flow – this
is the track we are going to take.

Hyperbolicity of the system is mainly related to the properties of the so-called rotation
function that can be calculated from the potential. Being a bit technical its definition and
relevant properties are discussed in the next section. Formulation of our main theorem
(Theorem 1) is likewise left to the next section as it is in terms of the rotation function.
Nevertheless, it might be useful to point out that

– In case the rotation function (and the billiard configuration) satisfies some hyperbo-
licity condition (see Definition 2), the soft billiard system is hyperbolic and ergodic.
Although somewhat otherwise stated, this fact was proved in [DL]. The condition is,
essentially, necessary for ergodicity (note however Remark 1).

– In this paper we concentrate on decay of correlations. If – in addition to those needed
for hyperbolicity – the rotation function satisfies further regularity conditions (see
Definition 3), the rate of mixing is proved to be exponential.

In most of the paper we think of the rotation function as being fixed with the desired
properties. It is only Sect. 5 when we turn to some specific potentials. Nevertheless, two
technical conditions supposed to hold throughout the paper are:

– In order to be able to define a rotation function at all, we introduce h(r) = r2(1 −
2V (r)) (cf. Sect. 5) and require h′(r) > 0 for all but finitely many r (this condition
ensures the lack of trapping zones, cf. [DL]):

– The scattering occurs on rotation symmetric potentials of finite range – that is, poten-
tial for every scatterer is concentrated on a circle and depends only on the distance
from the center. (Note this is the case in our references like [DL], too.)

– The horizon is finite (i.e. the maximum time between two enterings of consecutive
potential disks is uniformly bounded above for any trajectory).

1 In [DL] there is a smooth potential example with ergodic behaviour, too; however it is unstable with
respect to small perturbations like varying the full energy level.
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Proof of our main theorem is based on our second main reference, [Ch]. In this paper,
by implementing the techniques of L. S. Young from [Y], N. Chernov showed that given
any hyperbolic system with singularities for which one can show the validity of certain
technical properties, correlations decay exponentially fast.

What we perform below is the proof of these technical properties for our “soft” bil-
liard system. Even though the existence of invariant cone fields is established in [DL],
the uniformity of hyperbolicity (Subsect. 3.2) needs detailed investigation. An even more
important new difficulty that we have to overcome is the treatment of quantities con-
nected to the second derivative of the dynamics, especially while traveling through the
potential. An analysis finer than before – in this sense – of the evolution of fronts is
needed. This applies especially to the self-contained proof of curvature and distortion
bounds (Subsect. 3.3).

It is a key aspect of our method that arguments related to expansion and distortion can
be carried out by considering motion inside and outside the potential disks separately.
Actually, our choice of the outgoing phase space and the Euclidean metric (see Sect. 2) is
related to this point of view and not to the tradition of [Ch]. (Using the Euclidean metric
with the phase space of incoming particles instead of outgoing, our distortion bounds
would no longer hold.) The splitting of motion into “potential” and “free” intervals is,
however, slightly restrictive. Namely, certain soft billiard systems that seem ergodic and
exponentially mixing are covered neither in this paper nor in [DL] (see also Sect. 6,
especially Remark 1).

The paper is organized as follows. In Sect. 2 the dynamical system along with the rota-
tion function and its properties are defined, and our main theorem is formulated. Section 3
gives a detailed geometric analysis of the system. After fixing notations and establishing
some basic properties in Subsect. 3.1, Subsect. 3.2 is mainly concerned with uniform hy-
perbolicity (Proposition 1) and related issues. In Subsect. 3.3 important regularity prop-
erties of unstable manifolds are shown. Specifically, curvature bounds, distortion bounds
and absolute continuity of the holonomy map are proven (Propositions 2, 3 and 4). As a
final bit of the general proof in Sect. 4 we investigate the growth of unstable manifolds.
The fact that expansion prevails the harmful effect of singularities is quantificated in the
growth formulas of Proposition 5. As a conclusion we refer to Theorem 2.1 from [Ch]:
a hyperbolic system with singularities for which Propositions 1, 2, 3, 4 and 5 are valid
enjoys exponential decay of correlations. For the reader’s convenience, we formulate
the theorem of Chernov in the Appendix. Last but not least, preceding some concluding
remarks, in Sect. 5 we turn to the investigation of specific potentials: as corollaries of
our main theorem certain soft billiard systems are shown to exhibit exponential decay of
correlations.

We note that it is not clear how sharp our results are. On the one hand, the conditions
for ergodicity – which are part of our conditions – formulated by Donnay and Liverani
are more or less sharp (see [Do1]). On the other hand, the conditions formulated for EDC
by Chernov are sufficient, but most probably not necessary. So, although we know that
Chernov’s conditions (e.g. the bounded curvature assumption and the distortion bounds)
are not satisfied when our regularity conditions are not met, it is well possible that EDC
still occurs. At some points of the paper we will point out why our regularity conditions
are necessary for Chernov’s method to work.

Part of the results in this paper and a sketch of the proof can also be found in the
proceedings paper [BáTó].
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2. Definition and Basic Properties of the System

The phase space. Consider finitely many disjoint circles of radius R on the unit two-
dimensional flat torus T| 2. (Thinking of a periodic array of circular disks on the Euclidean
plane R2 would not be very much different.) We require that the configuration has finite
horizon: there is a certain constant τmax such that any straight segment longer than τmax
on R2 intersects at least one of the scatterers.

Remark. As the circles are disjoint, the minimum distance between two scatterers is
bigger than some positive constant τmin.

Let the Hamiltonian motion of our point particle be described by a potential which is
identically zero outside and is some rotation symmetric function V (r) inside the circular
scatterers (here r is the distance from the center of the scatterer). For simplicity we fix
the mass and the full energy of our point particle as

m = 1, E = 1

2
.

This way the free flight velocity has unit length, |v| = 1 (in other words v ∈ S1, where
S1 is the unit circle in R2).

We assume (cf. Definition 2 and the remarks following it) that the Hamiltonian flow
restricted to this surface of constant full energy is ergodic (with respect to Liouville
measure). Equivalently one can say that the map corresponding to the naturally defined
Poincaré section of the flow (see below) is ergodic. Our aim is to study the rate of mixing
for this map.

Following tradition we work with the Poincaré section of outgoing velocities (parti-
cles that have just left one of the scatterers).

Notation. Denote by M the Poincaré section of outgoing particles. Sometimes we will
also use the notation M+ = M to stress that this is the outgoing phase space, to avoid
confusion.

The phase points are the boundary points of the scatterers, equipped with unit veloc-
ities pointing outwards. The phase space M is a finite union of cylinders (each corre-
sponding to one of the circular scatterers). Coordinates for the cylinders are:

Notations. s denotes the arclength parameter along the scatterer (starting from a point
arbitrarily fixed), describing position of the outgoing particle.

ϕ denotes the collision angle, the angle that the outgoing velocity makes with the
normal vector of the scatterer in the point s. Clearly ϕ ∈ [−π

2 ,
π
2 ].

The position can be equivalently described by another angle parameter � ∈ [0, 2π ],
for which s = R� (here R is the radius of the scatterer).

Note that M defined this way is a (finite union of) Riemannian manifold(s).

Notation. Let
|dx|e =

√
ds2 + dϕ2 (2.1)

denote the Riemannian metric on M , which will be referred to as the Euclidean metric
(e-metric).

Later on we will introduce another auxiliary metric quantity very common in the
billiard literature, the p-metric.
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As to dynamics, let T denote the first return map onto M .
Notation for the Lebesgue measure on M is m, i.e. dm = ds dϕ. Furthermore, given

a curve γ in M we denote the Lebesgue measure on γ with mγ (this is simply the length
on γ ).

Denote by µ the natural invariant probability measure on M . µ is absolutely contin-
uous w.r.t Lebesgue, and the density is of the form

dµ = const. cos(ϕ) dm = const. cos(ϕ) ds dϕ. (2.2)

It is this latter measure for which T is assumed to be ergodic and K-mixing and this
is the one we work with as well.

Remark. In a completely similar manner we could consider the Poincaré section M−
of incoming particles. The two coordinates would be the point of income and the angle
the incoming velocity makes with the (opposite) normal vector. However, in some key
steps of the proof – e.g. the distortion bounds of Subsubsect. 3.3.2 – we heavily use that
our phase space is the outgoing, and not the incoming Poincaré section.

With slight abuse of notation we often refer to the incoming Poincaré coordinates
with the same symbols s and ϕ. That should cause no confusion.

Rotation function, its basic properties and formulation of the main theorem. To describe
the first return map T we decouple the motion into two parts: free flight among the scat-
terers and flight in the potential of the scatterers. Free flight can be treated completely
analogously to the billiard case. The particle leaves one of the scatterers in the point s0
with velocity ϕ0 and reaches some other scatterer in point s (or equivalently, �) with
unit incoming velocity that makes an angle ϕ with the (opposite) normal vector n(s)

at the point of income. After some inter-potential motion the particle leaves the circle
in some point s1 = (R�1) with outgoing velocity specified by ϕ1. Out of symmetry
reasons ϕ1 = ϕ, thus the only nontrivial quantity is the angle difference �� = �1 −�.
Again out of symmetry reasons �� depends only on the angle ϕ.

The role in the map T played by the potential is completely described by the function
��(ϕ).

Definition 1. From here on we will refer to this function ��(ϕ) as the rotation func-
tion.

Being mainly interested in the differential aspects of T we introduce one more
Notation

κ(ϕ) = d��(ϕ)

dϕ
.

Below two important properties are defined in terms of which our main theorem is
formulated.

Definition 2. The soft billiard system satisfies property H in case

1. there is some positive constant c such that |2 + κ(ϕ)| > c for all ϕ;
2. the configuration of scatterers is such that the distance of any two circles is bounded

below by τmin, where

τmin � max
ϕ

{
−2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

}
.
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Remarks. – Although a bit otherwise formulated, it was essentially proven in [DL]
that soft billiard systems with property H are hyperbolic and ergodic. The mechanism
of hyperbolicity is briefly explained in Sect. 3.2.

– Note that in case κ > 0 or κ < −2 for all ϕ, the lower bound for τmin turns out to
be negative. Thus the second assumption is only restrictive in the opposite case, and
the closer κ may get to −2 from above the more restrictive it is.

– In case there is some ϕ for which 0 > κ > −2, a positive lower bound on the free
path is to be assumed. Thus a planar periodic configuration of circles is needed that
has finite horizon and (a possibly great) given τmin simultaneously. At first sight it
seems questionable whether such configurations exist at all, nevertheless, as proven
in [BöTa], this happens with positive probability in a random construction.

Definition 3. The rotation function is termed regular in case the following properties
hold:

1. ��(ϕ) is piecewise uniformly Hölder continuous. I.e. there are constants C < ∞
and α > 0, and furthermore, [−π

2 ,
π
2 ] can be partitioned into finitely many intervals,

such that for any ϕ1 and ϕ2 (from the interiour of one of the intervals):

|��(ϕ1) − ��(ϕ2)| ≤ C|ϕ1 − ϕ2|α.

2. ��(ϕ) is a piecewise C2 function of ϕ on the closed interval [−π
2 ,

π
2 ], in the above

sense. (Note, however, that κ , in contrast to ��, can happen to have no finite one-
sided limits at discontinuity points.)

3. There is some finite constant C such that

|κ ′(ϕ)| ≤ C|(2 + κ(ϕ))3|,

where κ ′(ϕ) is the derivative of κ with respect to ϕ.
4. For the final property consider any discontinuity point ϕ0, where κ(ϕ) (in contrast to

��(ϕ)) has no finite limit from the left. Of course, in case there is no finite limit from
the right, the analogous property is similarly assumed.
Restricted to some interval [ϕ0 − ε, ϕ0); ω(ϕ) = 2+κ(ϕ)

cosϕ is a monotonic function of
ϕ.

Remark. Note that in case κ is C1 (or piecewise C1 with boundedness of itself and of
κ ′) regularity is automatic. In case the asymptotics of κ near some discontinuity is some
power law (ϕ0 − ϕ)−ξ (with ξ > 0), regularity means 1

2 ≤ ξ < 1.

We need two more definitions for the statement of our theorem:

Definition 4. Consider a phase space M with a dynamics T and a T -invariant proba-
bility measure µ. We say that the dynamical system (M, T , µ) has exponential decay of
correlations (EDC) , if for every f, g : M → R Hölder-continuous pair of functions
there exist constants C < ∞ and a > 0 such that for every n ∈ N,

∣∣∣∣
∫
M

f (x)g(T nx)dµ(x) −
∫
M

f (x)dµ(x)

∫
M

g(T nx)dµ(x)

∣∣∣∣ ≤ Ce−an.
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Definition 5. We say that (M, T , µ) satisfies the central limit theorem (CLT) (for Hölder
continuous functions) if for every η > 0 and every Hölder-continuous function f : M →
R with

∫
f dµ = 0, there exists a σf ≥ 0 such that

1√
n

n−1∑
i=0

f ◦ T i distr−→ N (0, σf ),

where N (0, σf ) is the Gaussian distribution with variance σ 2
f .

Now we are ready to formulate our main theorem.

Theorem 1. Suppose that the soft billiard system (M, T , µ) satisfies property H and the
rotation function is regular. Suppose furthermore that there are no corner points and the
horizon is finite (0 < τmin, τmax < ∞).

Then, dynamics enjoys, in addition to ergodicity and hyperbolicity, exponential decay
of correlations and the central limit theorem for Hölder-continuous functions.

Proof. Ingredients for the proof are in Sect. 3 and 4. Actually, following tradition (e.g.
[Ch]) we modify the dynamical system in several steps (Conventions 1 and 2). We will
use a phase space M̄ , which is the original M cut into (countably many) connected
components by singularities and so called “secondary singularities”. We will also use a
higher iterate of the dynamics T1 = T m0 with some m0 to be found later.

It is the modified dynamical system (M̄, T1, µ) for which the conditions for EDC
and LCT given in [Ch] are checked. Precisely, EDC and CLT for (M̄, T1, µ) are the
consequence of Propositions 1, 2, 3, 4 and 5 and Theorem 2.1 from [Ch].

Exponential decay of correlations and the central limit theorem for (M, T , µ) follow
easily from EDC and CLT for (M̄, T1, µ). ��

For the reader’s convenience, we give a formulation of Theorem 2.1 from [Ch] in the
Appendix.

Now we turn to the details of the above proof.

Some conventions. Constants that depend only on the map T itself (like τmin, τmax, . . .)
will be called global constants.

Positive and finite global constants, whose value is otherwise not important, will be
often denoted by just c or C (typically c for lower bounds and C for upper). That is, in
two different lines of the same section, C can mean two different numbers.

Two quantities f and g defined on (the tangent bundle of) M (or on some subset like
the unstable cone field, see Subsect. 3.1) will be called equivalent (f ∼ g) if there are
some global positive constants c and C such that cf ≤ g ≤ Cf .

2.1. Singularities. Just like in billiards the dynamics T is not smooth at certain one-co-
dimensional submanifolds (curves) of M . Consider the set of tangential reflections:

S0 =
{
(s, ϕ) ∈ M | ϕ = ±π

2

}
.

Actually S0 = ∂M (the boundary of the phase space). It is not difficult to see that T is
not continuous at S1 = T −1S0, i.e. at the preimages of tangential reflections. However,
additional singularities appear at

Z0 = { (s, ϕ) ∈ M | ϕ = ϕ0 }
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in case ϕ0 is some discontinuity point for ��(ϕ), κ(ϕ) or κ ′(ϕ)). In such a case we will
consider the phase space as if it were cut into two regions, more precisely Z0 is treated
as part of the boundary. As κ is not differentiable at Z0, T is not C1 at the preimage of
this set, at Z1 = T −1Z0.

Furthermore we introduce the notations

S(n) = S1 ∪ T −1S1 ∪ · · · ∪ T −n+1S1

and Z(n), analogously. The nth iterate of the dynamics is not smooth precisely at Z(n) ∪
S(n).

The geometrical structure ofZ(n) is much similar to that of S(n). Indeed, one can think
of Z1 as the set of those trajectories that would touch tangentially a smaller disk (one of
radius R sin(|ϕ0|)) at the next collision. The following properties of the singularity set
are of crucial importance:

– Z(n) ∪ S(n) is a finite union of C2 curves.
– Continuation property. Each endpoint, x0, of every unextendable smooth curve γ ⊂

Z(n) ∪S(n), lies either on the extended boundary Z0 ∪S0 or on another smooth curve
γ ′ ⊂ Z(n) ∪ S(n) that itself does not terminate at x0.

– Complexity property. Let us denote by Kn the complexity of Z(n) ∪ S(n), i.e. the
maximal number of smooth curves in Z(n) ∪ S(n) that intersect or terminate at any
point of Z(n) ∪ S(n). Kn grows sub-exponentially with n.

For the proof of these properties in the billiard setting see the literature, especially [ChY],
our case is analogous.

One more similarity with “hard” billiards is that for technical reasons later on we will
introduce countably many secondary singularities parallel to the lines of S(n). Such sec-
ondary singularities are to be introduced parallel to Z(n) as well, in case |κ| is unbounded
as ϕ → ϕ0, at least from one side. We will turn back to this question in Subsubsect. 3.2.6.

3. Fronts, u-Manifolds and Unstable Manifolds

3.1. u-manifolds and their geometric properties.

Fronts and their geometric description. Our most important tools in describing hyperb-
olicity – local orthogonal manifolds or simply fronts – we inherit from billiard theory.
A front W is defined in the flow phase space rather than in the Poincaré section.

Definition 6. Take a smooth 1-codim submanifold E of the whole configuration space,
and add the unit normal vector v(q) of this submanifold at every point q as a velocity,
continuously. Consequently, at every point the velocity points to the same side of the
submanifold E. The set

W = {(q, v(q))|q ∈ E} ⊂ M, (3.1)

where v : E → S1 is continuous (smooth) and v ⊥ E at every point of E, is called a
front.

Analysis of the time evolution of fronts is the key to almost all the geometric prop-
erties of the system that we need. For this reason, we first discuss time evolution of an
arbitrary front. Later subsections will deal with special cases.

Consider a front with a reference point just before reaching a scatterer, and another
“perturbed” point nearby. With the notations introduced before (see also Fig. 1), the
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dq−, dv−
dq+, dv+

ϕ− ϕ+

�

��(ϕ)

s

Fig. 1. Conventions for notation and signs for fronts

perturbation bringing the reference trajectory into the perturbed one is (dq−, dv−) just
before collision, (ds−, dϕ−) in the incoming Poincaré section, (ds+, dϕ+) in the out-
going Poincaré section, (dq+, dv+) just after collision, and (dq ′−, dv′−) just before the
next collision. The evolution of the perturbations is:

ds− = dq−
cosϕ−

,

d�− = ds−
R

,

dϕ− = dv− + d�−,

d�+ = d�− + κdϕ−, (3.2)

dϕ := dϕ+ = dϕ−,

ds+ = Rd�+,

dq+ = − cosϕds+,

dv+ = −d�+ − dϕ+,

while crossing the potential. For the evolution equations of free flight, we introduce the

Notation. τ = τ(x) will denote the length of free flight of the particle before reaching
the next scatterer.

So, during free flight we have

dq ′
− = dq+ + τdv+, (3.3)

dv′
− = dv+.
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Note that the angles of incidence and reflection are measured in different directions –
in order to keep them equal, as they traditionally are, – but dq− and dq+ (just like dv−
and dv+) are measured in the same direction, unlike usually in billiards.

Based on these, we can find out about the evolution of the derivative B = dv
dq

.

Notations. B will denote the derivative of the unit normal vector (velocity) v(q) of a
front: dv = Bdq for tangent vectors (dq, dv) of the front.

m = dϕ
ds

will denote the slope of the (trace of the) front in the Poincaré section.
B is nothing other than the curvature of the submanifold E. Yet we will prefer to call

it the second fundamental form (SFF), in order to avoid confusion with other curvatures
that are coming up. The term “form” refers to higher dimensional cases when B is a
symmetric operator.

Equation (3.2) gives

m− = cosϕB− + 1

R
,

1

m+
= 1

m−
+ Rκ,

cosϕB+ = m+ + 1

R
, (3.4)

while crossing the potential, which can be summarized in

B+ = 2 + κ(ϕ) + (1 + κ(ϕ))R cosϕB−
R cosϕ(1 + κ(ϕ) + κ(ϕ)R cosϕB−)

, (3.5)

and (3.3) gives
1

B ′−
= 1

B+
+ τ (3.6)

during free flight.

Notations.

λ1 := dq+
dq−

, (3.7)

λ2 := dq ′−
dq+

, (3.8)

λ := λ1λ2.

These are exactly the expansion factors along the front, for the respective “pieces” of the
dynamics. (They are also expansion factors in the Poincaré section, but in the p-metric
to be introduced later.) We have

λ1 = 1 + κ + κR cosϕB− = 1 + κRm− = m−
m+

, (3.9)

λ2 = 1 + τB+ = B+
B ′−

. (3.10)
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To study decay of correlations, we need one more derivative.

Notation. D = dB
dq

.

This is exactly the curvature of the front as of a subset of the flow phase space (and
not as of a subset of the configuration space – unlike B, cf. (3.1)).

To study the evolution of D we need to consider two small pieces of the front, one
around the reference point, and one around the perturbed one. Let the change in the SFF
be

dB−− = D−dq

before scattering, and

dB++ = D+dq

after scattering. dB−− is not the difference of SFF-s at the points of incidence, because
the perturbed point has to travel another dτ− = tan ϕ−dq− to reach the scatterer (dτ can
be negative), which changes its SFF according to the rules (3.6) of free flight. Taking
that into account, we have

dB− = dB−− − B2
−dτ− = dB−− − B2

− tan ϕ−dq−. (3.11)

Similarly, for the fronts leaving the potential,

dB++ = dB+ − B2
+dτ+ = dB+ − B2

+ tan ϕ+dq+. (3.12)

(Note our convention on the signs of dq−, dq+, ϕ− and ϕ+.)
To follow the evolution of curvature we introduce

Notations. D1 = dB−
dq− (�= D−), K− = dm−

ds− , K+ = dm+
ds+ , D2 = dB+

dq+ and η(ϕ) = dκ(ϕ)
dϕ

.
With these we get from (3.2), (3.4), (3.7), (3.9), (3.11) and (3.12),

D1 = D− − tan ϕB2
−,

K− = cos2 ϕD1 − sin ϕB−m−,

K+ = 1

λ3
1

K1 − R

(
m−
λ1

)3

η, (3.13)

cos2 ϕD2 = −K+ − sin ϕB+m+,

D+ = D2 − tan ϕB2
+,

while crossing the potential, and, from (3.3), (3.6) and (3.8)

D′
− = 1

λ3
2

D+ (3.14)

during free flight.
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3.2. Invariance of convex fronts, u-fronts and u-manifolds. In [DL] it is shown –
although not explicitly stated in this integrated form – that if Property H (defined in
Definition 2) is satisfied, then convex fronts with suitably small SFF-s (the upper bound
may be ∞) either remain convex, or focus before reaching the next scatterer, and become
convex again, with suitably small SFF. This property is called the “invariance of convex
fronts”. In the present work we also require (see Theorem 1) that τ be bounded from
below by some τmin > 0 even in the case when [DL] did not (the “no corner points”
assumption), and an upper bound τmax (the “finite horizon” assumption). In order to
establish estimates that we will need later, we must repeat some steps of the argument
in [DL]. We omit details of the calculations; these can be done by the reader or can be
found in the above paper.

Notations.

τ1 = max

{
0,max

ϕ

{
−Rκ(ϕ)

cosϕ

2 + κ(ϕ)

}}
,

B∗ = 1

τ1
(∞ if τ1 = 0). (3.15)

From (3.4) we get that if 0 < B− < B∗ then either m+ > 0 and thus B+ > 1
R

or
B+ < −B∗. This – by (3.6) – implies that c < B ′− < B∗∗ with some global constants
c > 0 and B∗∗ < B∗, assuming that τmin > 2τ1, which is exactly Property H. All in all,

c < B− < B∗∗ implies c < B ′
− < B∗∗. (3.16)

This motivates our

Definition 7. A u-front is a front with c < B− < B∗∗. A u-manifold is the trace of a
u-front on the Poincaré phase space.

Definition 8. An s-front is a front with c < −B+ < B∗∗. An s-manifold is the trace of
an s-front on the Poincaré phase space.

As we have seen, u-manifolds remain u-manifolds under time evolution. s-fronts are
exactly the u-fronts of the inverse dynamics.

The aim of this subsection is to show important properties of u-fronts and u-manifolds,
which are stronger than those shown for an arbitrary front in the previous subsection.
In Subsect. 3.3 we further restrict to the case of unstable manifolds, which are special
kinds of u-manifolds.

3.2.1. Expansion estimates along u-fronts. First we work out estimates for the expan-
sion along a front from one moment of incidence to the next. We will use these estimates
later to estimate expansion of our dynamics T in our outgoing Poincaré phase space M .

Consider a u-front with the earlier notations. We start with an easy observation we
will often use: from (3.4) and (3.16) we get 1

R
< m− < 1

R
+ B∗∗, which implies

m− ∼ 1. (3.17)

To get the order of magnitude for the expansion factor λ, put the formulas in (3.5)
and (3.9) together, and get that

R cosϕB+λ1

2 + κ(ϕ)
= 1 + (1 + κ(ϕ))RB−

cosϕ

2 + κ(ϕ)
.
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The right-hand side is trivially bounded from above since B− is bounded, and so is
1+κ(ϕ)
2+κ(ϕ)

= 1 − 1
2+κ(ϕ)

. On the other hand,

– It is greater than 1 if 1+κ(ϕ)
2+κ(ϕ)

> 0.

– If 1+κ(ϕ)
2+κ(ϕ)

≤ 0 (that is, −2 < κ(ϕ) ≤ −1), then

1 + (1 + κ(ϕ))RB−
cosϕ

2 + κ(ϕ)
≥ 1 + (1 + κ(ϕ))R

cosϕ

2 + κ(ϕ)
B∗

≥ 1 + (1 + κ(ϕ))R
cosϕ

2 + κ(ϕ)

2 + κ(ϕ)

−Rκ(ϕ) cosϕ
= −1

κ(ϕ)
≥ 1

2
.

All in all, using λ2 = B+
B ′−

∼ B+ (see (3.10) and (3.16)) we have

λ ∼ B+λ1 ∼ 2 + κ(ϕ)

cosϕ
, (3.18)

which is one of our key estimates. Notice that the right-hand side cannot be too small
due to Property H (Definition 2).

We can also get the order of magnitude for λ1 and λ2 separately: (3.9) and (3.17)
gives

|λ1|
√

1 + m2+ =
√
λ2

1 + m2− ∼ |2 + κ(ϕ)|. (3.19)

(The last equivalence is true because both sides are bounded away from zero, and can
only be big when they grow linearly with κ .) Notice that λ1 can be very small (even
zero), and can even change signs while 2 + κ(ϕ) remains positive. Of course, m+ has
to be infinity (and change signs) simultaneously.

Putting (3.18) and (3.19) together, we get

|λ2|√
1 + m2+

∼ 1

cosϕ
. (3.20)

This last line can be rewritten as

1 ∼ |λ2| cosϕ√
1 + m2+

∼ |B+| cosϕ√
1 + m2+

= |m+ + 1
R

|√
1 + m2+

,

which implies that there is a global constant c such that

∣∣∣∣m+ + 1

R

∣∣∣∣ > c. (3.21)

3.2.2. Expansivity. To obtain hyperbolicity, we must see that u-manifolds are expanded
by the dynamics. In the first round we prove a lemma about the expansion on u-fronts
from collision to collision.

Lemma 1. There exists a global constant 1 > 1, such that for every u-front, |λ| ≥ 1.
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Proof. Besides τ > 0 andB− > 0 we will use that τ ≥ 2τ1+d, where d := τmin−2τ1 >

0, and τ1 ≥ −Rκ(ϕ)
cosϕ

2+κ(ϕ)
for every ϕ (see Definition 2 and (3.15)). Altogether:

τ ≥ d − 2Rκ(ϕ)
cosϕ

2 + κ(ϕ)
. (3.22)

We will also use from (3.15) and Definition 7 that

0 < B− ≤ 2 + κ(ϕ)

−Rκ(ϕ) cosϕ
(3.23)

whenever the right-hand side is positive, which is the −2 < κ(ϕ) < 0 case. Now we
start by putting together (3.9), (3.10) and (3.5) to get

λ = (1 + κ(ϕ)Rm−)(1 + τB+)

= 1 + κ(ϕ) + κ(ϕ)R cosϕB− + τ

(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))B−

)
.

We estimate this taking care of the signs of the particular terms.
– If κ(ϕ) ≤ −2 − δ, then

λ ≤ 1 + κ(ϕ) ≤ −1 − δ.

– If −2 + δ ≤ κ(ϕ) ≤ −1 then both coefficients of B− are negative, so we can
use (3.23) to estimate the right-hand side from below. In the next step we find the
coefficient of τ positive, so we can use (3.22). What we get is

λ ≥ 1 + κ(ϕ) + κ(ϕ)R cosϕ
2 + κ(ϕ)

−Rκ(ϕ) cosϕ

+τ

(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))

2 + κ(ϕ)

−Rκ(ϕ) cosϕ

)

= −1 + τ
2 + κ(ϕ)

−κ(ϕ)R cosϕ

≥ −1 +
(
d − 2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

)
2 + κ(ϕ)

−κ(ϕ)R cosϕ

≥ 1 + dδ

2R
.

– If −1 ≤ κ(ϕ) ≤ 0, then the coefficient of τ is positive, so we first use (3.22) to
estimate the right-hand side from below. In the next step we find one coefficient of
B− positive, so we just use B− > 0, and one coefficient of B− negative, so we can
use (3.23). What we get is

λ ≥ 1 + κ(ϕ) + κ(ϕ)R cosϕB−

+
(
d − 2Rκ(ϕ)

cosϕ

2 + κ(ϕ)

)(
2 + κ(ϕ)

R cosϕ
+ (1 + κ(ϕ))B−

)

= 1 + d
2 + κ(ϕ)

R cosϕ
+ d(1 + κ(ϕ))B− − κ(ϕ) − κ2(ϕ)R cosϕ

2 + κ(ϕ)
B−

≥ 1 + d
2 + κ(ϕ)

R cosϕ
− κ(ϕ) − κ2(ϕ)R cosϕ

2 + κ(ϕ)

2 + κ(ϕ)

−Rκ(ϕ) cosϕ

≥ 1 + d

R
.
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– If 0 < κ(ϕ), then

λ ≥ 1 + 2d

R
. ��

3.2.3. Transversality.

Lemma 2. We will see that u- and s-manifolds are uniformly transversal. I.e. there is
some global constant α0 > 0 such that given any two tangent vectors (in the outgoing
Poincaré phase space) dxs and dxu of an s- and a u-manifold, respectively, we have

�(dxu, dxs) > α0.

Proof. To see this, use Definition 8 and (3.4) to get ms+ ∼ −1 for the slope of any s-
manifold. This way, it is enough to see that the slopes of u- and s-manifolds are bounded
away, that is, |mu+ − ms+| > c. To get this, use – again – Definition 8, Definition 7, the
estimates before them and (3.4) to get

− 1

R
> ms

+ > − 1

R
− cosϕB∗∗,

mu
+ > 0 or mu

+ < − 1

R
− cosϕB∗, (3.24)

so either mu+ − ms+ > 1
R

or ms+ − mu+ > cosϕ(B∗ − B∗∗). This implies the statement
when cosϕ is not too small. However, when cosϕ is small, we have to use the estimate
(3.21) and (3.24) to see also that

mu
+ > 0 or mu

+ < − 1

R
− c,

which completes the proof. ��

3.2.4. Hyperbolicity. In what follows we will consider time evolution of vectors tangent
to u-manifolds. Notation both in the incoming and the outgoing phase space will be of
the type dx = (ds, dϕ). In addition to the e-metric (2.1) we will use one more metric
quantity, the p-metric:

|dx|p = |ds| cos(ϕ).

The p-metric measures distances along the corresponding u-front. It is degenerate on
the whole tangent bundle. However, when restricted a u-manifold in the incoming phase
space, by (3.17) we have:

|dx|p ∼ |dx|e cos(ϕ).

According to Lemma 1, u-vectors are expanded uniformly (from collision to collision,
that is, in the incoming phase space) in the p-metric:

|DT |p = λ ≥ 1 > 1.

To obtain expansion in the e-metric and the outgoing phase space, we look at the nth

iterate of the outgoing phase space dynamics the following way:

– switch to p-metric
– reach the next scatterer
– do n − 1 steps in the incoming phase space
– cross the potential
– switch back to Euclidean metric.
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This way we get

|DT n dx|e =
√

1 + m2
+(n)

cosϕ(n)

λ1(n)λ(n−1)λ(n−2) . . . λ(1)λ2
cosϕ√
1 + m2+

|dx|e,

where symbols with ()-ed subscripts mean values at the appropriate iterate of the phase
point. Using (3.19), (3.20) and Lemma 1 we get

|DT n dx|e ∼ λ(n−1)λ(n−2) . . . λ(1)
2 + κ(ϕ(n))

cosϕ(n)

|dx|e. (3.25)

This way we have
|DT n dx|e > c11

n|dx|e (3.26)

with some global constant c1. Again, this is for u-vectors in the outgoing phase space.
The transversality of s- and u- vectors, stated in Proposition 1 implies that the product

of (length) expansion factors for s- and u- vectors is equivalent to the n-step (Lebesgue)
volume expansion factor. Using (2.2), and the T -invariance of µ, we get that if dx is a
u-vector and dy is an s-vector, then

|DT n dx|e
|dx|e

|DT n dy|e
|dy|e ∼ cosϕ

cosϕ(n)

.

Combinig this with (3.25) we get

|DT n dy|e ∼ cosϕ

2 + κ(ϕ(n))

1

λ(n−1)λ(n−2) . . . λ(1)
|dy|e,

which implies

|DT n dy|e <
C1

1n
|dx|e (3.27)

with some global constant C1. Again, this is for s-vectors in the outgoing phase space.

Convention 1. We choose a positive integer m0 the following way. First take m1 such
that c11

m1 > 1 and C1
1m1 < 1. This way any high enough power of the dynamics,

T m with m > m1 is uniformly expanding along u-manifolds and uniformly contracting
along s-manifolds with 11 = 1m−m1 . Now recall the notion and the basic properties of
complexity Kn from Subsect. 2.1. As Kn grows subexponentially we may choose m2 for
which we have Km < 1m−m1 whenever m > m2. We fix m0 = min(m1,m2) + 1.

The advantage of this choice is that the iterate T1 = T m0 is uniformly hyperbolic
(see the proposition to come) with constant 11 for which 11 > Km0 + 1. This later fact
we only use in Sect. 4.

Let us summarize what we have seen so far from the hyperbolic properties in the
following

Proposition 1. There exist two families of cones Cs(x) and Cu(x) – called stable and
unstable cones – in the tangent space of M such that

DT (Cu(x)) ⊂ Cu(T x) and Cs(T x) ⊂ DT (Cs(x)).
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The stable/unstable cone is uniformly contracting/expanding:

|DT −1
1 (dx)| ≥ 11|dx| ∀dx ∈ Cs(x),

|DT1(dx)| ≥ 11|dx| ∀dx ∈ Cu(x).

Furthermore, the two cone fields are uniformly transversal in the sense above.
Vectors of the stable/unstable cone are often called s- and u-vectors.

Proof. The two cones are formed by the tangent vectors of s- and u-manifolds, respec-
tively. Invariance is the implication (3.16), recalling Definition 7 and 8. Expansion and
contraction are (3.26), (3.27) and Convention 1. Transversality is Lemma 2. ��

We note that so far we have only used that our billiard satisfies property H, which is
a property already formulated in [DL], and which is known from [Do1] to be essentially
necessary for ergodicity.

3.2.5. Alignment. We need to investigate the relative position of u-manifolds and sin-
gularities in order to find out how much of a u-manifold can be “close” to a singularity.
Our aim is to prove the following

Lemma 3. Take any smooth component Z of T −kZ0 with k ≥ 0, where

Z0 = { (s, ϕ) ∈ M | ϕ = ϕ0 }

with any ϕ0 ∈ [−π
2 ,

π
2 ]. Given some small positive δ let us denote the δ-neighborhood

of Z by Z[δ]. There are global constants C < ∞ and α > 0 such that for any u-manifold
W we have

mW

(
Z[δ] ∩ W

)
≤ Cδα, (3.28)

where mW is the Lebesgue measure – the length – on the u-manifold W .

Proof. If k > 0, then Z is an s-manifold, and is transversal to our u-manifold W accord-
ing to Lemma 2, so the statement holds even with α = 1.

So take k = 0, then Z is described by mZ = 0. If κ(ϕ) remains bounded near ϕ0,
then for our u-manifold W ,

1

m+
= 1

m−
+ Rκ(ϕ)

is bounded (see (3.4) and (3.17)), so the two curves are transversal again, we can choose
α = 1.

The interesting case is k = 0, κ(ϕ) → ∞ as ϕ → ϕ0. In this case (3.17) ensures that
1

m− is negligible

– say, less than the ε portion – compared to Rκ(ϕ). This – through (3.4) and the
definition m+ = dϕ+

ds+ = dϕ
ds

– implies that for u-manifolds

(1 − ε)Rκ(ϕ) ≤ ds

dϕ
≤ (1 + ε)Rκ(ϕ).
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Integrating this with respect to ϕ and using the definition of κ(ϕ), we get

(1 − ε)R(��(ϕ) − ��(ϕ̄) ≤ s − s̄ ≤ (1 + ε)R(��(ϕ) − ��(ϕ̄))

which means that, close (enough) to a κ(ϕ) → ∞ singularity, a u-manifold is (arbi-
trarily) similar to the graph of the rotation function ��(ϕ). Now the Hölder-continuity
of ��(ϕ) required in the regularity condition (Definition 3) implies the statement of
the lemma. ��

We note that the proof of alignment is the only place where we use our assumption that
the rotation function is Hölder-continuous. The above proof shows that Hölder-continu-
ity is indeed a necessary condition for alignment. Alignment is not among the conditions
of Chernov’s theorem which our proof is based on, but we will use it in the proof of the
growth properties (Proposition 5). At that place it seems to be unavoidable, so we think
that Hölder-continuity of the rotation function is needed for Chernov’s method to work.
On the other hand, as already pointed out in the introduction, we do not claim that it is
a necessary condition for EDC.

3.2.6. Homogeneity strips, secondary singularities and homogeneous u-manifolds.

Notation.

ω(ϕ) := 2 + κ(ϕ)

cosϕ
(3.29)

We will see that expansion in the e-metric is unbounded as |ω(ϕ)| → ∞. This cer-
tainly happens in the vicinity of ±π

2 , nevertheless, there can exist other discontinuity
values ϕ0 with the same property. Big expansion comes together with big variations of
expansion (i.e. distortion) rates along u-manifolds. For that reason we need to partition
the phase space into homogeneity layers in which ω(ϕ) is nearly constant. We fix a large
integer k0 (to be specified in Sect. 4) and define for k > k0 the I-strips as

Ik =
{
(s, ϕ) | k2 ≤ |ω(ϕ)| < (k + 1)2

}
. (3.30)

Recall from Definition 3 that whenever limϕ→ϕ0 |ω(ϕ)| = ∞, there exists an inter-
val [ϕ0 − ε, ϕ0) restricted to which |ω(ϕ)| is a monotonic function of ϕ. We partition a
subinterval of this interval into I-strips, thus k0 is chosen accordingly large. In case there
are several discontinuity points of ω(ϕ) (with unbounded one-sided limits) we may
construct further I-strips, I (s)

k , analogously. Here the index s labels the finitely many
discontinuities of this kind.

Furthermore take I
(u)
0 ; u = 1 · · ·U , where the index u labels the finitely many con-

nected components of the complement of all the above layers (that is, the “remaining
part” of the phase space).

We will use the notations;0 for the countably many boundary components of I-strips.

Convention 2. From now on, ;0 – just like S0 and Z0 before – is considered as part of
the boundary of the phase space. That is, we will use a modified phase space M̄ , whose
connected components are the homogeneity strips Ik (and I

(u)
0 ).

In complete analogy with primary singularities we introduce furthermore the nota-
tions ;1 and ;(n) for the corresponding preimages. The geometric properties of these
secondary singularity lines are analogous to those of primary ones (for example, (3.28)
applies).
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Definition 9. We will say that a u-manifold is homogeneous whenever it is contained in
one of the homogeneity strips Ik (or I

(u)
0 ).

In Sects. 3.3.2 and 4 we will be concerned with u-manifolds that remain homogeneous
for several steps of the dynamics.

3.3. Regularity properties of unstable manifolds.

Definition 10. An unstable manifold is a u-manifold for which all past iterates are u-
manifolds as well.

Analogously, a stable manifold is an s-manifold for which all future iterates are
s-manifolds as well.

From the theory of hyperbolic systems (see [Ch] and references therein) we know that
there is a unique unextendable unstable (and similarly a unique unextendable stable)
manifold through (µ−)almost every point of M̄ . Thus it makes sense to talk about the
(un)stable manifold through the point.

We will also refer to unstable manifolds as “local unstable manifolds” (LUMs),
stressing the fact that they are (and all their past iterates as well are) contained in some
homogeneity layer Ik . (Remember that our phase space ends on the boundary of Ik , so
Ik+1 is already another connected component.)

In this subsection we deal with properties of unstable manifolds which are stronger
than those proved before for arbitrary u-manifolds in Subsect. 3.2.

3.3.1. Curvature bounds. In what follows we obtain bounds on unstable manifolds that
will guarantee that their curvature is uniformly bounded from above.

First we look at u-fronts as submanifolds of the flow phase space.
Putting the formulas in (3.13) and (3.14) together, we get

D′
− = −D−

λ3 + 2 sin ϕB2−
λ3 cosϕ

− 2 sin ϕB ′2−
λ2 cosϕ

+ sin ϕB−
Rλ3 cos2 ϕ

+ sin ϕB ′−
Rλ2

2 cos2 ϕ
−Rm3

−
η

λ3 cos2 ϕ
.

Our key estimate (3.20) implies

cosϕ|λ2| ∼
√

1 + m2+,

which is bounded from below. So, in the above sum, terms number 2,3,4 and 5 are all
bounded in absolute value. The last term is bounded due to our assumption∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ < C.

As a consequence, we have

|D′
−| ≤ |D−|

13 + C2, (3.31)

with some global constant C2 and can state

Lemma 4. There is a global constant D̂ such that for almost any point of the phase
space, the front corresponding to the LUM has

|D−| ≤ D̂.
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Proof. Choose D̂ = C21
3

13−1
. Now suppose indirectly that there is a set H ⊂ M of

positive measure, for the points of which |D−| > D̂ + ε. Then (3.31) implies that there
is a c(ε) > 0 such that |D−| > D̂+ε+c on T −1H . This implies that |D−| > D̂+ε+2c
on T −2H , and so on: |D−| > D̂ + ε + kc on T −kH for all k > 0. But the T −kH -s are
all sets of equal positive measure, which contradicts the finiteness of the phase space.
��

As a consequence, we can give curvature bounds for local unstable manifolds in the
incoming and outgoing phase spaces. Since an unstable manifold in the Poincaré section
is the graph of a function ϕ = ϕ(s), its curvature is given by

g = ϕ′′(s)√
1 + (ϕ′(s))23 = K

√
1 + m23 .

We have reached

Proposition 2. There is a global constant C such that for almost any point of the phase
space, the front corresponding to the LUM has

|g+| ≤ C.

Proof. It can be read from (3.13) that

|K−| < C, (3.32)

thus

|g−| < C.

To find out about g+, we write

g+ = K+√
1 + m2+

3 =

 m+√

1 + m2+




3
K−
m3−

− R
η√

1 + ( 1
m− + Rκ(ϕ))2

3 .

This is also bounded in absolute value due to our assumption

∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ < C

(see Definition 3). ��

We note that this proof suggests that our condition

|κ ′(ϕ)| ≤ C|(2 + κ(ϕ))3|

is necessary for bounded curvature, and consequently for Chernov’s method to work.
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3.3.2. Distortion bounds. Length of a u-manifold W is expanded by T n locally with a
factor

JW,n(x) = |DT ndx|e
|dx|e ,

where dx is the vector tangent to the curve of W at x. The aim of this subsubsection is
to prove

Proposition 3. Let W be an unstable manifold on which T n is smooth. Assume that
Wi = T iW is a homogeneous unstable manifold for each 1 ≤ i ≤ n. Then for all
x, x̄ ∈ W ,

| ln JW,n(x) − ln JW,n(x̄)| ≤ C
[
distWn(T

nx, T nx̄)
] 1

5 .

Proof. Note that JW,n(x) = ∏n−1
i=0 JWi,1(T

ix). Hence, it is enough to prove the lemma
for n = 1, because dist(T ix, T i x̄) grows uniformly exponentially in i due to (3.26). So
we put n = 1.

Denote x′ = T x and, we will use a ′ to denote quantities related to the point x′.
Recall from Sect. 2 that the expansion factor is easily calculated in the p-metric. To

obtain J := JW,1(x) we transform |dx|e to |dx|p, take the p-expansion factor from (3.7)
and (3.8) and transform back. This way:

J =
√

1 + m′2

cosϕ′ λ′
1 λ2

cosϕ√
1 + m2

.

In order to calculate the change in the logarithm of J as we move from x to x̄, it is
best to write it with the help of (3.29) in the form

J = ω(ϕ′)J ′
1J2 (3.33)

with

J1 =
√

1 + m2+
2 + κ(ϕ)

λ1

and
J2 = cosϕ√

1 + m2+
λ2.

Equations (3.19) and (3.20) imply

|J1| ∼ |J2| ∼ 1. (3.34)

The change in logarithm of the three terms can be calculated independently, moreover,
J1 and J2 are expected to change moderately, while ω(ϕ′) can be kept under good con-
trol, because it depends only on ϕ′. The three terms are investigated in three sublemmas.
Thus Proposition 3 is the direct consequence of the three Sublemmas 1, 2 and 3. Of
course, the first and third (concerning J1 and ω(ϕ)) have to be applied with ′-es. When
applying Sublemma 3, we use the trivial fact |ϕ − ϕ̄| ≤ dist(x, x̄). ��

In the arguments below, as usual, quantities with neither + nor − in their index are
meant to have a +, that is, in the outgoing phase space.
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Sublemma 1. There exists a global constant C such that when a perturbation of size dx

is performed on the base point, we have

|d ln J1| ≤ C|dx|.
Proof. In many estimates, we will use – without further mention – that m− and K− are
bounded (see (3.17) and (3.32)).

With the help of (3.9) we choose the form

J1 =
√
(1 + κ(ϕ)Rm−)2 + m2−

2 + κ(ϕ)
.

When calculating the differential, we use

dκ(ϕ) = η(ϕ)dϕ = η(ϕ)m+√
1 + m2+

dx

and

dm− = K−ds− = K−
ds+
λ1

= K−
λ1

dx√
1 + m2+

= K−√
λ2

1 + m2−
dx.

Calculating the differential, we get

d ln J1 = m− + κ(ϕ)R + κ2(ϕ)R2m−
((1 + κ(ϕ)Rm−)2 + m2−)3/2

K−dx

+2Rm− − 1 − m2− + (2Rm− − 1)Rm−κ(ϕ)

(2 + κ(ϕ))((1 + κ(ϕ)Rm−)2 + m2−)

η(ϕ)m+√
1 + m2+

dx.

The coefficient of dx in the first term is obviously bounded since the denominator is one
degree higher in κ(ϕ) and is bounded away from zero. In the second term, we use (3.9)
and (3.19) to get

∣∣∣∣∣∣
m+√

1 + m2+

∣∣∣∣∣∣ =
∣∣∣∣∣∣

m−√
1 + m2+λ1

∣∣∣∣∣∣ ∼
∣∣∣∣ 1

2 + κ(ϕ)

∣∣∣∣ , (3.35)

so, looking again at the degrees of polynomials (in κ) in the numerator and denominator
of the second term, we have

2Rm− − 1 − m2− + (2Rm− − 1)Rm−κ(ϕ)

(2 + κ(ϕ))(1 + κ(ϕ)Rm−)2 + m2−)

η(ϕ)m+√
1 + m2+

≤ C

∣∣∣∣ η(ϕ)

(2 + κ(ϕ))3

∣∣∣∣ ≤ C1. ��

Sublemma 2. There exists a global constant C such that when a perturbation of size dx

is performed on the base point, we have

|d ln J2| ≤ C|dx′|
(note the ′ on the right-hand side).
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Proof. With the help of (3.4) and (3.10) we choose the form

J2 = cosϕ + τm+ + τ
R√

1 + m2+
.

When calculating the differential, we use

dϕ = m+√
1 + m2+

dx

and

dm+ = K+ds+ = K+
dx√

1 + m2+
= (1 + m2

+)g+dx.

This way we get

d ln J2 = − sin ϕm+

cosϕλ2

√
1 + m2+

dx + B ′
−dτ − m+( τ

R
+ cosϕ) − τ

cosϕλ2
g+dx.

Due to (3.20), the coefficient of dx in the first term is equivalent to − sin ϕm+
1+m2+

, and in the

third term to −m+( τ
R

+cosϕ)−τ√
1+m2+

g+, both of which are bounded (cf. (3.35)).

We finish by estimating dx and dτ with dx′. First,

dx′ = Jdx ∼
∣∣∣∣2 + κ(ϕ′)

cosϕ′

∣∣∣∣ dx ≥ cdx. (3.36)

Second, the triangle inequality implies |dτ | ≤ |ds| + |ds′−|. On the one hand, (3.36)
implies |ds| ≤ |dx| ≤ C|dx′|. On the other hand (3.19) implies,

dx′ =
√

1 + m′2+|λ′
1|ds′

− ∼ |2 + κ(ϕ′)|ds′
− ≥ cds′

−.

These give

|dτ | ≤ C|dx′|. ��

Sublemma 3. There exists a global constant C such that if x = (s, ϕ) and x̄ = (s̄, ϕ̄)

are in the same homogeneity layer

Ik =
{
(s, ϕ) | k2 ≤ |ω(ϕ)| < (k + 1)2

}
,

then

|ln |ω(ϕ)| − ln |ω(ϕ̄)|| ≤ C|ϕ − ϕ̄|1/5.
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Proof. We use the notation ω′(ϕ) = d
dϕ

ω(ϕ). It is easy to see that the regularity of κ(ϕ)
implies ∣∣∣∣ ω

′(ϕ)
ω3(ϕ)

∣∣∣∣ ≤ C.

That is, everywhere inside Jk ,∣∣∣∣d| ln ω(ϕ)|
dϕ

∣∣∣∣ =
∣∣∣∣ω

′(ϕ)
ω(ϕ)

∣∣∣∣ ≤ C|ω(ϕ)|2 ≤ 2Ck4.

This, together with the obvious k2 ≤ |ω(ϕ)|, |ω(ϕ̄)| < (k + 1)2, implies

| ln |ω(ϕ)| − ln |ω(ϕ̄)|| ≤ min
{

2Ck4|ϕ − ϕ̄|, ln(k + 1)2 − ln k2
}

≤ min

{
2Ck4|ϕ − ϕ̄|, 2

k

}
.

It is easy to check that for every k and every ξ ,

min

{
2Ck4|ξ |, 2

k

}
≤ 2C1/5ξ1/5,

which completes the proof. ��
After proving that the expansion factors vary nicely between nearby points on the

same u-manifold, we now investigate their behaviour at points of different u-manifolds
that lie on the same s-manifold. This is the absolute continuity property. Just like it was
with the distortion bounds, it is important to consider homogeneous manifolds.

We introduce the simplified notation Ju
k (x) and J s

k (x) for the k-step length expansion
factor at x along the unstable and the stable manifold, respectively.

Proposition 4. Let Ws be a small s-manifold, x, x̄ ∈ Ws , and Wu, W̄u two u-manifolds
crossing Ws at x and x̄, respectively. Assume that T k is smooth on Ws and T iWs is a
homogeneous s-manifold for each 0 ≤ i ≤ k. Then

| ln Ju
k (x) − ln Ju

k (x̄)| ≤ C,

where C is a global constant.

Proof. We have bounds on the change in expansion as we move along unstable mani-
folds. In order to have such bounds as we move along stable manifolds, we wish to use the
fact that stable manifolds are turned into unstable ones when we revert time. However,
this time reflection symmetry is not complete: we always work in the outgoing Poincaré
section, and reverting time turns this into the incoming one. To deal with the problem,
we introduce the map P which is the dynamics through the potential, and which maps
from the incoming to the outgoing Poincaré section. That is,

P((s−, ϕ)) := (s+, ϕ) = (s− + Rδ�(ϕ), ϕ).

We can see from (3.4) that if dx− = (ds−, dϕ) is a tangent vector of the incoming phase
space, then

|DP(dx−)|e =
√

1 + m2+|λ1| 1√
1 + m2−

|dx−|e.
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Denote by ν(x) the expansion factor of DP along the unstable manifold at x, that is
ν(x) = |DP(dx−)|e

|dx−|e , where dx is an unstable vector at x. We can use (3.19) and (3.17) to
get

ν(x) ∼ |2 + κ(ϕ)|.
We also introduce the “turn back” operator, which we will denote by a “−” sign: this
turns incoming phase points into outgoing phase points which corresponds to reverting
the velocity. “−” is almost the identity function from M− to M+, only the collision angle
is reverted (see our sign convention in Fig. 1):

− : M− → M+,

−(s,ϕ−) := (s+, ϕ+) = (s−,−ϕ−).

With these notations, if x = P(y), the time reflection symmetry implies

J s
k (x) = ν(−x)

J u
k (−T ky)ν(−T kx)

∼ 1

Ju
k (−T ky)

|2 + κ(ϕ)|
|2 + κ(ϕk)| . (3.37)

The transversality of stable and unstable vectors, stated in Proposition 1 implies that
Ju
k (x)J

s
k (x) is equivalent to the k-step (Lebesgue) volume expansion factor. Using (2.2),

and the T -invariance of µ, we get

Ju
k (x)J

s
k (x) ∼ cosϕ

cosϕk

. (3.38)

Putting together (3.37) and (3.38) we get

Ju
k (x) ∼ Ju

k (−T ky)
2 + κ(ϕk)

2 + κ(ϕ)

cosϕ

cosϕk

= Ju
k (−T ky)

ω(ϕk)

ω(ϕ)
.

The same is true for x̄ = P(ȳ), so we have

| ln Ju
k (x)−ln Ju

k (x̄)| ≤ | ln Ju
k (−T ky)−ln Ju

k (−T kȳ)|+
∣∣∣∣ln

∣∣∣∣ω(ϕk)

ω(ϕ̄k)

∣∣∣∣
∣∣∣∣+

∣∣∣∣ln
∣∣∣∣ω(ϕ)

ω(ϕ̄)

∣∣∣∣
∣∣∣∣+C.

To see the boundedness of the first term of the right-hand side we can apply Proposi-
tion (3), because −T ky and −T kȳ are on the same local unstable manifold. The second
and third term is bounded because Ws and T kWs are homogeneous, see Sect. 3.2.6. Now
the proof of Proposition 4 is complete. ��

4. Growth Properties of Unstable Manifolds

This last section is concerned with the growth properties of LUMs. Our aim is to show
that LUMs “grow large and round, on the average”. This is expressed in the formulas of
Proposition 5 below.

Recall Convention 1. Throughout the section we use the higher iterate of the dynam-
ics, T1 = T m0 . This has singularity set (secondary and primary) A = ;(m0). For the
higher iterates of T1 the singularity set is A(n) = A ∪ T1

−1A ∪ · · · ∪ T −n+1A.
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δ0-LUM’s. To formulate and prove further important conditions on growth of LUMs
we need to recall several notions and notations from [Ch]. Let δ0 > 0. We call W a
δ0-LUM if it is a LUM and diamW ≤ δ0. For an open subset V ⊂ W and x ∈ V denote
by V (x) the connected component of V containing the point x. Let n ≥ 0. We call an
open subset V ⊂ W a (δ0, n)-subset if V ∩ (A(n)) = ∅ (i.e., the map T n

1 is smooth and
homogeneous on V ) and diam T n

1 V (x) ≤ δ0 for every x ∈ V . Note that T n
1 V is then a

union of δ0-LUM’s. Define a function rV,n on V by

rV,n(x) = dT n
1 V (x)(T

n
1 x, ∂T n

1 V (x)).

Note that rV,n(x) is the radius of the largest open ball in T n
1 V (x) centered at T n

1 x. In
particular, rW,0(x) = dW (x, ∂W).

One further notation we introduce is Uδ (for any δ > 0), the δ-neighborhood of the
closed set A ∪ S0 ∪ Z0.

The aim of this section is to prove the proposition below.

Proposition 5. There are constants α0 ∈ (0, 1) and β0,D0, η, χ, ζ > 0 with the follow-
ing property. For any sufficiently small δ0, δ > 0 and any δ0-LUM W there is an open
(δ0, 0)-subset V 0

δ ⊂ W ∩Uδ and an open (δ0, 1)-subset V 1
δ ⊂ W \Uδ (one of these may

be empty) such that mW(W \ (V 0
δ ∪ V 1

δ )) = 0 and that ∀ε > 0,

mW(rV 1
δ ,1 < ε) ≤ α011 · mW(rW,0 < ε/11) + εβ0δ

−1
0 mW(W), (4.1)

mW(rV 0
δ ,0 < ε) ≤ D0δ

−η mW(rW,0 < ε) (4.2)

and

mW(V 0
δ ) ≤ D0 mW(rW,0 < ζδχ). (4.3)

Proof of this Proposition goes along the lines of the arguments from [Ch]. First let us
consider

Accumulation of singularity lines. There are two sources of accumulation of the com-
ponents of the set A that can cut LUM’s into arbitrarily many pieces.

First, the set ;1 consists of countably many curves stretching approximately parallel
to some curves in S1 (or Z1) and approaching them. So, each set T −1Ik and k �= 0, is a
narrow strip with curvilinear boundaries. The expansion of unstable fibers in these strips
can be estimated using (3.33), (3.34) and (3.30). More precisely, let W ⊂ T −1Ik be a
LUM, for some k �= 0. Then the expansion factor, Ju(x), on W satisfies

Ju(x) ∼ ω(ϕ) ∼ k2 ∀x ∈ W. (4.4)

Second, there might be multiple intersections of the curves in S1 ∪ Z1. Recall Kn, the
complexity of S(n) ∪ Z(n) and it is properties from Subsect. 2.1. Specifically important
for us is the choice of the higher iterate T1 = T m0 with its relevant properties, see
Convention 1.
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Indexing system. . Before proving the proposition we introduce a handy indexing sys-
tem, cf. [Ch]. Let δ0 > 0 and W be a δ0-LUM. If δ0 is small enough, then W crosses at
most Km0 curves of the set S(m0) ∪ Z(m0), so the set W \ (S(m0) ∪ Z(m0)) consists of at
most Km0 + 1 connected curves, let us call them W1, . . . ,Wp with p ≤ Km0 + 1.

On each Wj the map T1 (as a map on M) is smooth, but any Wj may be cut into
arbitrary many (countably many) pieces by other curves in A, which are the preimag-
es of the boundaries of Ik . Let � ⊂ W be a connected component of the set W \ A.
It can be identified with the (m0 + 1)-tuple (k1, . . . , km0; j) such that � ⊂ Wj and
T i� ⊂ Iki for 1 ≤ i ≤ m0. Note that this identification is almost unique. Indeed,
given j , (T i� ⊂)T iWj is contained in a strip of the phase space that lies between two
horizontal lines: two components of S0 ∪ Z0. It might happen that expansion factors
diverge – and consequently, homogeneity strips have been constructed – at both sides
of the strip. Thus given the index ki , we have T i� ⊂ Iki , where Iki can be the kth

i
layer from one of the two homogeneity structures. In such a case we use the following
convention; the homogeneity layers at the “upper” and “lower” ends of the phase space
strip (corresponding to j ) are labelled by odd and even numbers, respectively. This way
the indexing system is made unique and (4.4) remains true.

All in all, we will write � = �(k1, . . . , km0; j). Of course, some strings (k1, . . . ,

km0; j) may not correspond to any piece of W , for such strings �(k1, . . . , km0; j) = ∅.
Denote by Ju

1 (x) = Ju(x) · · · Ju(T m0−1x) the expansion factor of unstable vectors
under DT1. Let |�| = m�(�) be the Euclidean length of a LUM �. We record two
important facts:

(a) For every point x ∈ �(k1, . . . , km0; j) we have

Ju
1 (x) ≥ Lk1,...,km0

:= max


11, C20

∏
ki �=0

k2
i


 ,

where C20 is some positive global constant. This follows from (4.4).
(b) For each �(k1, . . . , km0; j) we have

|�(k1, . . . , km0; j)| ≤ Mk1,...,km0
:= min


|W |, C21

∏
ki �=0

k−2
i


 ,

where C21 = C−1
20 |W |max and |W |max is the maximal length of LUMs in M . This

follows from the previous fact.

Next, put

θ0 := 2
∞∑

k=k0

k−2 ≤ 4/k0

and let us turn to the proof of our growth formulas.
Let W be a δ0-LUM and δ > 0 be small. For each connected component � ⊂

W \ A put �0 = � ∩ Uδ and �1 = int(� \ Uδ) (recall Uδ is the δ-neighborhood of
A∪ S0 ∪Z0). Due to the Continuation Property (cf. Subsect. 2.1) and to Alignment (cf.
Subsubsect. 3.2.5), the set �0 consists of two subintervals adjacent to the endpoints of
� (they may overlap and cover �, of course). The set �1 is either empty or a subinterval
of �. We put W 1 = ∪�⊂W\A�1.
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Proof of (4.1). For each �1 the set T1(�1 ∩ {rW 1,1 < ε}) is the union of two subinter-
vals of T1�

1 of length ε adjacent to the endpoint of T1�
1. Using the above indexing

system we get

mW(rW 1,1 < ε) ≤
∑

k1,...,km0 ,j

2εL−1
k1,...,km0

≤ 2εp
[
1−1

1 + C20
−1(θ0 + θ2

0 + · · · + θ
m0
0 )

]

≤ 2ε(Km0 + 1)
(
1−1

1 + C20
−1m0θ0

)
.

We now assume that k0 is large enough so that

α0 := (Km0 + 1)(1−1
1 + C−1

20 m0θ0) < 1

and thus get
mW(rW 1,1 < ε) ≤ min{|W |, 2α0ε}.

The first term on the right-hand side of (4.1) is equal to

α011 min{|W |, 2ε/11} = min{α011|W |, 2α0ε}.
Since α011 > 1, we get

mW(rW 1,1 < ε) ≤ α011 · mW

(
rW,0 < ε/11

)
. �� (4.5)

Next, to obtain an open (δ0, 1)-subset V 1
δ of W 1, one needs to further subdivide the

intervals �1 ⊂ W such that |T1�
1| > δ0. Each such LUM T1�

1 we divide into s�
equal subintervals of length ≤ δ0, with s� ≤ |T1�

1|/δ0. If |T1�
1| < δ0, then we set

s� = 0 and leave �1 unchanged. Then the union of the preimages under T1 of the above
intervals will make V 1

δ . Now we must estimate the measure of the ε-neighborhood of
the additional endpoints of the subintervals of T1�

1. This gives

mW(rV 1
δ ,1 < ε) − mW(rW 1,1 < ε) ≤

∑
�⊂W\A

2s�ε|C22�
1|/|T1�

1|

≤
∑

�⊂W\A
2C22ε|�1|/δ0

≤ 2C22εδ
−1
0 |W |.

Here C22 = exp(const · |W |
1
5
max) is an upper bound on distortions on LUM’s, see Prop-

osition 3. Combining the above bound with (4.5) completes the proof of (4.1) with
β0 = 2C22.

We now prove (4.2). It is enough to consider ε < |W |/2, so that the right-hand side

of (4.2) equals 2D0δ
−ηε. We can put V 0

δ = W \ V 1
δ . Then the left-hand side of (4.2)

does not exceed 2Jδε, where Jδ is the number of nonempty connected components of

the set V 0
δ , which is at most the number of connected components of W \ A of length

> 2δ. Hence, clearly Jδ ≤ |W |/δ ≤ δ0/δ. This proves (4.2) with η = 1.
Finally, we prove the inequality (4.3). Again, let � be a connected component of

W \ A and �0, �1 be defined as above, with the set �0 consisting of two subintervals
adjacent to the endpoints of �. By (3.28) – and the analogous property for the secondary
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singularities, see Subsubsect. 3.2.5 and 3.2.6 – each of these subintervals has length
smaller than Cδα .

Now, the right-hand side of (4.3) equals D0 min{|W |, 2ζ δχ }. So, it is enough to show
that mW(V 0

δ ) ≤ Bδχ for some B, χ > 0. We have

mW(V 0
δ ) ≤

∑
�⊂W\A

min{2Cδα, |�|}

≤
∑

k1,...,km0 ,j

min{2Cδα,Mk1,...,km0
}

≤ const · δα + const ·
∑

k1,...,km0

∗
min


δα,

∏
ki �=0

k−2
i


 ,

where
∑∗ is taken over m0-tuples that contain at least one nonzero index ki �= 0. The

following lemma – Lemma 7.2 from [Ch], which was proved in the Appendix of that
paper – completes the proof of (4.3) with χ = α

2m0
.

Lemma 5. Let ε > 0 and m ≥ 1. Then

∑
k1,...,km≥2

min
{
ε, (k1 · · · km)−2

}
≤ B(m) · ε1/2m.

With the help of this lemma Proposition 5, and consequently, Theorem 1 is proved. ��

5. Specific Potentials

In this section we would like to show that, as important corollaries of Theorem 1, expo-
nential decay of correlations can be established for certain specific potentials. To prove
such corollaries we need to calculate the rotation function ��(ϕ) from the potential
V (r).

As to the detailed description of the Hamiltonian flow in a circularly symmetric
potential, we refer to the literature, e.g. [DL] and references therein. Most important
is that besides the full energy there is an additional integral of motion, the angular
momentum l, that can be calculated for a specific trajectory as

l = R sin ϕ,

where ϕ is the collision angle at income. For brevity of notation it is worth introducing
the function

h(r) = (1 − 2V (r))r2.

By the presence of the angular momentum motion is completely integrable and is de-
scribed by the pair of differential equations (recall our convention that the full energy is
E = 1

2 ):

ṙ2 = r−2(h(r) − l2),

r2�̇ = l.
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Combining these we get
d�

dr
= ± l

r
√
h(r) − l2

, (5.1)

where the sign depends on whether r is increasing or decreasing. More precisely, there
is a minimum radius

r̂ = r̂(ϕ) : h(r̂) = l2 = R2 sin2 ϕ,

down to which r decreases (with negative sign in (5.1)) and from which r increases (with
positive sign in (5.1)). This results in

��(ϕ) = 2
∫ R

r̂

l

r
√
h(r) − l2

dr. (5.2)

For a generic potential, the dependence of (5.2) on ϕ is rather implicit: ϕ is present
both in the integrand (via l) and in the limits (via r̂). One possible strategy to follow is to
obtain some even more complicated formulas for the derivatives in the general case, and
based on those perform estimates that guarantee the desired dynamical properties. This
is possible as long as only hyperbolicity and ergodicity is treated – like in [DL] – and
thus only the first derivative, κ(ϕ) = ��′(ϕ) is needed. However, for rate of mixing you
need one more derivative, κ ′(ϕ) = ��′′(ϕ), cf. Definition 3. Finding good sufficient
conditions on the potential V (r) that guarantee the regularity of κ seems to be a very
hard task, if possible at all. Thus we have chosen instead to investigate some specific
cases where �� is directly computable from (5.2). Of course, this way we could handle
a much narrower class of potentials than [DL], nevertheless, the established dynamical
property is stronger.

Corollary 1. Consider the case of a constant potential,

V (r) = V0 for any r ∈ [0, R).

Correlations decay with an exponential rate in case

– V0 > 0 and the configuration is arbitrary,
– V0 < 0 and the configuration is such that τmin > 2R√

1−2V0−1
.

Remarks. Actually, the analysis of this constant potential case from the point of ergodic-
ity dates back to the late eighties, to [Kn2] and [Ba]. Rate of mixing is, to our knowledge,
discussed for the first time. For potential values V0 > 1

2 the particle cannot enter the
disks, the system is equivalent to the traditional dispersing billiard, thus we consider the
opposite case, V0 <

1
2 .

Proof. Let us introduce the quantity

ν =
√

1 − 2V0 (5.3)

which is less or greater than 1 depending on the sign of V0. Let us consider the case of
positive V0 first and introduce furthermore the angle ϕ0 for which:

ν = sin ϕ0.

In case |ϕ| > ϕ0, |l| is greater than the maximum value h(r) can take, which indicates
that the particle has too large angular momentum to enter the potential, thus �� = 0. In
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the opposite case of |ϕ| < ϕ0 it is easy to obtain r̂ = R| sin ϕ|
ν

and perform the integration
of (5.2). All in all

��(ϕ) = 2 arccos

(
sin ϕ

ν

)
if |ϕ| < ϕ0,

0 if |ϕ| > ϕ0.

On the one hand, whatever configuration we have, the system satisfies property H
(cf. Definition 2), as either κ = 0 or κ ≤ −2

ν
< −2. On the other hand, κ is a piecewise

C1 function of ϕ and it behaves as (ϕ0 −ϕ)−
1
2 near the discontinuity point ϕ0. Thus κ is

regular (cf. Definition 3 and the remarks following it). This means that the first statement
of our Corollary follows from Theorem 1.

Now let us turn to the case of V0 < 0 (i.e. ν > 1). It is even simpler to calculate the
rotation function (5.2):

��(ϕ) = 2 arccos

(
sin ϕ

ν

)

for all ϕ. As ν > 1, this is a C2 function on the interval [−π
2 ,

π
2 ], thus κ is definitely

regular. As to property H, we have 0 > κ ≥ − 2
ν

, where the minimum is obtained at
ϕ = 0. Thus the assumption on the configuration from Definition 2 reads as τmin > 2R

ν−1
and the second statement of the corollary follows from Theorem 1. ��
Remark. Note that motion in the constant potential is equivalent to the problem of dif-
fraction from geometric optics. More precisely, we can think of the disks as if they
were made of a material optically different from their neighborhood, where the relative
diffraction coefficient is ν from (5.3). In case the disks are optically less dense than
their neighborhood (i.e. ν < 1, V0 > 0), we may observe the phenomenon of complete
reflection that corresponds to the limiting angle ϕ0.

Corollary 2. Given constants A > 0 and β > −2, consider the potential

V (r) = A

(
1 −

( r

R

)β
)
.

Correlations decay at an exponential rate in case:

π

ϕ

��(ϕ)

ϕ0−ϕ0−π
2

π
2

2π

0

(a) V (r) = V0(> 0)

ϕ

��(ϕ)

−π
2

π
2

2π

0

2π
2+β

2π − 2π
2+β

(b) V (r) = 1
2

(
1 − (

r
R

)β)
(β > 0)

Fig. 2. Rotation function for two examples
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– A = 1
2 , 0 > β(> −2) and the configuration is arbitrary,

– A = 1
2 , β > 0 and the configuration is such that τmin > 2R

β
.

Remark. Note that according to our construction the chosen value for the constant A,
A = 1

2 is exactly the full energy. If we had a different value for A, the integration in
(5.2) would be much more complicated. In other words, Corollary 2, in contrast to Cor-
ollary 1 is unstable with respect to variations of the full energy (see also the discussion
below, following the proof). Nevertheless it is nice to have at least one potential with
exponential mixing for any kind of power law behaviour (if β ≤ −2, a positive measure
set of trajectories is pulled into the center of the disk, cf. [DL]).

Proof. By straightforward calculation

h(r) = r2+β

Rβ
; and r̂ = R | sin ϕ| 2

2+β .

Then it is not hard to integrate in (5.2):

��(ϕ) = 4

2 + β

(π

2
− ϕ

)

for all ϕ �= 0. Thus �� is piecewise linear (in the general case with one discontinuity
of the first kind at ϕ = 0) and thus

κ = − 4

2 + β

identically. Regularity (in terms of Definition 3) is automatic.
Let us consider the attracting potentials, β < 0 first. In such a case the potential has

a singularity at the center of the disk, resulting in the discontinuity at ϕ = 02. Neverthe-
less, κ < −2, thus property H (cf. Definition 2) and consequently the first statement of
the corollary follows.

Now if β > 0, as A = 1
2 , the “top” of the potential is equal to the energy. As a

consequence, for the initial value ϕ = 0 the flow is not uniquely defined, resulting in
the discontinuity for the rotation function. However, in accordance with Definition 2,
property H is satisfied if τmin > 2R

β
. Thus the second statement of the corollary holds.

��

Discussion. As already mentioned, Corollary 2 is very sensitive to the conventionE= 1
2 .

Though very difficult to calculate, it is interesting to guess what happens if one perturbs
the constant A (or equivalently, the full energy level).

Let us consider the case β > 0 first. With A either increased or decreased from the
value 1

2 , the physical reason for the discontinuity at ϕ = 0 disappears and we expect
smooth rotation functions. By continuity of the potential at R, ��(π2 ) = 0 seems also
reasonable. As to the initial value ϕ = 0 let us have a look at the case A < 1

2 first. There
is no reason for the trajectory to deviate in direction: it slows down, reaches the center
and then speeds up following a linear track. Thus ��(0) = π . This altogether implies
on the basis of Lagrange’s mean value theorem that there definitely exists at least one
ϕ ∈ (0, π

2 ) for which κ(ϕ) = −2. In such a case, however, stable periodic orbits tend to
2 However, in case β = −2(1− 1

n ), the left and right limits coincide; this corresponds to the possibility
of regularizing the flow, cf. [DL] and [Kn1].
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appear and the system is most likely not even ergodic, cf. [Do1]. One can suspect that
a typical repelling potential which has a maximum less than the total energy leads to
non-ergodic soft billiards in a similar fashion.

In the opposite case of A > 1
2 the behaviour of trajectories in the vicinity of ϕ = 0

is completely different. As the top of the potential is higher than the full energy, the par-
ticle cannot “climb” it thus it should “turn back”. We expect ��(0) = 0 and a smooth
rotation function with κ > −2 for all ϕ. That would mean ergodicity and possibly expo-
nential mixing in case of a suitable configuration (cf. Definition 2). All in all, ergodic
and statistical behaviour is very sensitive to perturbation of the full energy level.

In the case of β < 0 it is not so easy to guess. Nevertheless, we can say something
rather surprising in one particular case that indicates similar sensitivity. Choose β = −1
and A = 1. It is not difficult to obtain h(r) = 2r − r2. The integral in (5.2) is a bit more
complicated now, nevertheless, it is possible to evaluate:

��(ϕ) = 2π − 2ϕ (5.4)

which means κ = −2 identically. This corresponds to the least ergodic behaviour we
can have. It is straightforward to obtain that an identically zero potential (V (r) = 0
for all r) would result in ��(ϕ) = π − 2ϕ. Thus by (5.4) in this particular case of
A = 1, β = −1 trajectories evolve as if they passed on freely and were reflected when
leaving the disc.

Thus if β = −1, we may have exponential mixing (A = 1
2 ) and stability (A = 1).

As to other values of A it is worth mentioning that ergodicity follows from [DL] in case
A < 1

2 .

6. Outlook

In this last section we list several possible interesting directions of future research.

1. As to the possibly most direct challenge, we conjecture that there exist rapidly mixing
potentials for which the condition |κ + 2| > c (i.e. property H from Definition 2) is
not satisfied for nearly tangential trajectories. Thus these systems are not covered by
Theorem 1, even more, at least to our knowledge, there is no result in the literature
on the ergodicity or hyperbolicity of such soft billiards either. Thus we make the
following

Remark. Note that it is possible that κ tends to −2 as ϕ → π
2 , nevertheless,

| 2+κ
cosϕ | > c and the system can be hyperbolic (possibly ergodic or exponentially

mixing). We will turn back to this question in a separate paper.

The difficulty with the treatment of this case is, as already mentioned in Sect. 1, that
the separate investigation of motion inside and outside the disks seems not to work
at several arguments.

2. Further exciting open questions seem even more difficult. One natural direction of
generalization is of course the higher dimensional case. As to softenings of multi-
dimensional dispersing billiards (motivated e.g. by the three dimensional Lorentz
process with spherical scatterers) we are not aware of any mathematical result. Even
hyperbolicity and ergodicity seem difficult, not to mention decay of correlations,
especially in view of the recently observed pathological behaviour of singularity
manifolds in multi-dimensional billiards (see [BChSzT]).
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3. Another direction of future research, motivated mainly by applications to physics,
could be the further investigation of those systems for which rapid mixing is already
established. For example, as mathematical evidence on the existence of diffusion
and other transport coefficients is given, it would be interesting to understand the
dependence of these on certain parameters like the full energy level.

4. Last but not least, in contrast to the generality of Theorem 1, it is striking how narrow
the class of specific potentials is for which we could apply the result in Sect. 5. It
would be desirable to establish – at least numerically – our reasonable regularity
properties for as wide a class of potentials as possible.
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Appendix

Here we provide, for the reader’s convenience, a very short, yet mainly self-contained
formulation of Theorem 2.1 from [Ch]. For self-containedness, many notions and nota-
tions are repeatedly introduced. First we give the conditions P0 . . . P6 which are required,
and then the statement of the theorem.

P0. The dynamical system is a map T : M \ ; → M , where M is an open subset in
a C∞ Riemannian manifold, M̄ is compact. ; is a closed subset in M̄ , and T is a C2

diffeomorphism of its range onto its image. ; is called the singularity set.

P1. Hyperbolicity. We assume there are two families of cone fields Cu
x and Cs

x in the
tangent planes TxM , x ∈ M̄ and there exists a constant 1 > 1 with the following
properties:

– DT (Cu
x ) ⊂ Cu

T x and DT (Cs
x) ⊃ Cs

T x whenever DT exists;
– |DT (v)| ≥ 1|v| ∀v ∈ Cu

x ;
– |DT −1(v)| ≥ 1|v| ∀v ∈ Cs

x;
– these families of cones are continuous on M̄ , their axes have the same dimensions
across the entire M̄ which we denote by du and ds , respectively;

– du + ds = dim M;
– the angles between Cu

x and Cs
x are uniformly bounded away from zero:

∃ α > 0 such that ∀x ∈ M and for any dw1 ∈ Cu
x and dw2 ∈ Cs

x one has

�(dw1, dw2) ≥ α

The Cu
x are called the unstable cones whereas Cs

x are called the stable ones.

The property that the angle between stable and unstable cones is uniformly bounded
away from zero is called transversality.

Some notation and definitions. For any δ > 0 denote by Uδ the δ-neighborhood of the
closed set ;∪ ∂M . We denote by ρ the Riemannian metric in M and by m the Lebesgue
measure (volume) in M . For any submanifold W ⊂ M we denote by ρW the metric
on W induced by the Riemannian metric in M , by mW the Lebesgue measure on W

generated by ρW , and by diamW the diameter of W in the ρW metric.
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LUM-s. To be able to formulate the further properties to be checked the reader is kindly
reminded of the notion of local unstable manifolds. We call a ball-like submanifold
Wu ⊂ M a local unstable manifold (LUM) if – dim Wu = du, – T −n is defined and
smooth on Wu for all n ≥ 0, – ∀x, y ∈ Wu we have ρ(T −nx, T −ny) → 0 exponentially
fast as n → ∞.

We denote byWu(x) (or justW(x)) a local unstable manifold containing x. Similarly,
local stable manifolds (LSM) are defined.

P2. SRB measure. The dynamics T has to have an invariant ergodic Sinai-Ruelle-Bo-
wen (SRB) measure µ. That is, there should be an ergodic probability measure µ on M

such that for µ-a.e. x ∈ M a LUM W(x) exists, and the conditional measure on W(x)

induced by µ is absolutely continuous with respect to mW(x).
Furthermore, the SRB-measure should have nice mixing properties: the system (T n, µ)

is ergodic for all finite n ≥ 0.

In our case the SRB measure is simply the Liouville-measure defined by (2.2) in
Sect. 2. Absolute continuity of µ is straightforward, while the other above required
properties (invariance, ergodicity, mixing) are proved in [DL].

P3. Bounded curvature. The tangent plane of an unstable manifold should be a Lips-
chitz function of the phase point. By this we mean that a base can be chosen in every
tangent plane so that every base vector is a Lipschitz function of the phase point.

Some notation. Denote by Ju(x) = |det(DT |Eu
x )| the Jacobian of the map T restricted

to W(x) at x, i.e. the factor of the volume expansion on the LUM W(x) at the point x.

P4. Distortion bounds. Let x, y be in one connected component of W \ ;(n−1), which
we denote by V . Then

log
n−1∏
i=0

Ju(T ix)

J u(T iy)
≤ ϕ

(
ρT nV (T nx, T ny)

)
,

where ϕ(·) is some function, independent of W , such that ϕ(s) → 0 as s → 0.

P5. Absolute continuity. Let W1,W2 be two sufficiently small LUM-s, such that any
LSM Ws intersects each of W1 and W2 in at most one point. Let W ′

1 = {x ∈ W1 :
Ws(x) ∩ W2 �= ∅}. Then we define a map h : W ′

1 → W2 by sliding along stable man-
ifolds. This map is often called a holonomy map. This has to be absolutely continuous
with respect to the Lebesgue measures mW1 and mW2 , and its Jacobian (at any density
point of W ′

1) should be bounded, i.e.

1/C′ ≤ mW2(h(W
′
1))

mW1(W
′
1)

≤ C′

with some C′ = C′(T ) > 0.

A few words are in order to discuss how our Proposition 4 implies property (P5). Let
us consider the unique ergodic SRB-measure µ for the dynamical system (in our billiard
dynamics this is precisely the Liouville measure defined by (2.2)). We know that the
conditional measure on any LUM induced by µ is absolutely continuous with respect to
the Lebesgue measure on the unstable manifold. These conditional measures are often
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referred to as u-SRB measures and their density w.r.t. the Lebesgue measure, ρW(x) is
given by the following equation (cf. [Ch]):

ρW(x)

ρW (y)
= lim

n→∞

n∏
i=1

Ju(T −ix)

J u(T −iy)
.

Actually, what directly follows from Proposition 4 is that if we consider two nearby
LUM-s W and W̄ and points x, x̄ on them joint by the holonomy map along an s-man-
ifold, then the ratio of ρW(x) and ρW̄ (x̄), the densities for the two u-SRB measures is
uniformly bounded. However, taking into account the invariance of µ and the uniform
contraction along s-manifolds, we may get the uniform bound on the distortion of Les-
begue measures, i.e. the property we assumed in (P5).

Some further notation. Let δ0 > 0.We callW a δ0-LUM if it is a LUM and diamW ≤ δ0.
For an open subset V ⊂ W and x ∈ V denote by V (x) the connected component of V
containing the point x. Let n ≥ 0. We call an open subset V ⊂ W a (δ0, n)-subset if
V ∩ ;(n) = ∅ (i.e., the map T n is smoothly defined on V ) and diam T nV (x) ≤ δ0 for
every x ∈ V . Note that T nV is then a union of δ0-LUM-s. Define a function rV,n on V

by

rV,n(x) = ρT nV (x)(T
nx, ∂T nV (x)).

Note that rV,n(x) is the radius of the largest open ball in T nV (x) centered at T nx. In
particular, rW,0(x) = ρW(x, ∂W).

Now we are able to give the last group of technical properties that have to be verified:

P6. Growth of unstable manifolds Let us assume there is a fixed δ0 > 0. Furthermore,
there exist constants α0 ∈ (0, 1) and β0,D0, κ, σ, ζ > 0 with the following property.
For any sufficiently small δ > 0 and any δ0-LUM W there is an open (δ0, 0)-subset
V 0
δ ⊂ W ∩ Uδ and an open (δ0, 1)-subset V 1

δ ⊂ W \ Uδ (one of these may be empty)
such that the two sets are disjoint, mW(W \ (V 0

δ ∪ V 1
δ )) = 0 and ∀ε > 0,

mW(rV 1
δ ,1 < ε) ≤ α01 · mW(rW,0 < ε/1) + εβ0δ

−1
0 mW(W),

mW(rV 0
δ ,0 < ε) ≤ D0δ

−κ mW(rW,0 < ε),

and

mW(V 0
δ ) ≤ D0 mW(rW,0 < ζδσ ).

Now we can formulate Theorem 2.1 from [Ch].

Theorem A.1 (Chernov, 1999). Under the conditions P0 . . . P6, the dynamical system
enjoys exponential decay of correlations and the central limit theorem for Hölder-con-
tinuous functions.

The properties stated in the theorem are defined in Definitions 4 and 5.
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