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Abstract

We investigate the limiting behavior of random tree growth in preferential attachment models.
The tree stems from a root, and we add vertices to the system one-by-one at random, according to
a rule which depends on the degree distribution of the already existing tree. The so-called weight
function, in terms of which the rule of attachment is formulated, is such that each vertex in the tree
can have at most K children.

We define the concept of a certain random measure µ on the leaves of the limiting tree, which
captures a global property of the tree growth in a natural way. We prove that the Hausdorff and the
packing dimension of this limiting measure is equal and constant with probability one. Moreover, the
local dimension of µ equals the Hausdorff dimension at µ-almost every point. We give an explicit
formula for the dimension, given the rule of attachment.

1 Introduction

We investigate a family of tree growth models in which the tree stems from a root in the beginning,
and vertices are added one at a time, the new vertex always attaching to exactly one already existing
vertex. The rule by which the new vertex chooses its parent, is dependent on the degree distribution
apparent in the tree at the time the vertex is born.

This big family of models includes the Barabási-Albert graph [1] for example, in which the linear
preferential attachment rule reproduces certain phenomena observed in real-world networks (e.g. the
power law decay of the degree sequence). This property of the Barabási-Albert graph was proved in
a mathematically precise way in [2] and, independently, in [9]. A wider class of models is considered
in [8, 7], for rigorous results on different cases of this model, see [10, 11].

The results mentioned above focus on the local behavior of the random tree, namely, they give
results concerning the neighborhood of a uniformly random vertex, which is chosen from the tree after
a long time of tree evolution. In this paper we concentrate on global properties of the limiting tree.

Similar questions for different type of random tree models are posed in [4].
It is natural to pose the following question. Let us fix a vertex, say the first vertex in the first

generation, just above the root. What is the “limiting success level” of this vertex, compared to the
other vertices in the same generation? What we mean by this is the number of descendants of this
vertex, after a long time of tree evolution, compared to the number of descendants of its brothers.

Another formulation of the same question is to fix a vertex, let the tree grow for a long time,
then choose a vertex uniformly at random from the big tree, and ask the probability that this random
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vertex is descendant of the fixed vertex. Clearly, if we look at these limiting probabilities for let us say
the first generation, we get a distribution, itself being random, that codes an important information
of the evolution of the tree.

If one looks at the system of these limiting (as time evolution of the tree tends to infinity) random
distributions on the different generations of the tree, it is tempting to ask something about the limiting
measure of this system, when letting the generation level tend to infinity. We will define the above
concepts properly, and will denote this overall limiting measure by µ.

We prove the following results.

1. The limiting entropies (as time tends to infinity) of the random measures on the different gen-
erations converge to a constant with probability one, as we let the generation level to infinity.
This constant h is called the entropy of the limiting measure µ.

2. The Hausdorff and the packing dimension of the random limiting measure µ is constant with
probability one. The entropy and the dimension satisfy a simple relation, see (8). Moreover, the
local dimension of µ equals the Hausdorff dimension at µ-almost every point.

3. Given the so-called weight function w, which determines the rule of the tree growth, we provide
an explicit formula for the entropy, and thus for the Hausdorff dimension, in terms of w.

Our model is special in the sense that we only allow a finite degree for each vertex, but it is
general in the sense that after having fixed the maximum number of children K a vertex may have,
the weight function w, which determines the rule of attachment, can be any positive-valued function
on {0, 1, . . . ,K − 1}.

The paper is structured as follows: The model and the results are presented in Section 2. Section 3
contains the main line of the argument, and ends with the proof of the first two results. Section 4 is
devoted to proofs of lemmas which have been used but not proven in Section 3. Finally, Section 5
contains the proof of the last result.

2 Notation, Definitions and Results

We consider rooted ordered trees, which are also called family trees or rooted planar trees in the
literature.

In order to refer to these trees it is convenient to use genealogical phrasing. The tree is thus
regarded as the coding of the evolution of a population stemming from one individual (the root of the
tree), whose “children” form the “first generation” (these are the vertices connected directly to the
root). In general, the edges of the tree represent parent-child relations, the parent always being the
one closer to the root. The birth order between brothers is also taken into account, this is represented
by the tree being an ordered tree (planar tree).

We only consider the case when every vertex can have at most K ∈ N children. We assume K ≥ 2
to avoid the trivial case when only one child is born per parent. (In that case the tree growth is
linear and the tree has no interesting structure.) We use the index set I := {1, 2, . . . , K}, and also use
I− := {0, 1, . . . ,K − 1}.

The vertices are labelled by the set

N =
∞∪

n=0

In, where I0 := {∅} ,

as follows. ∅ denotes the root of the tree, its firstborn child is labeled by 1, the second one by 2, etc.,
and its last one by K, all the vertices in the first generation are thus labeled with the elements of I.
Similarly, in general, the children of x = (i1, i2, . . . , in) are labeled by (i1, i2, . . . , in, 1), (i1, i2, . . . , in, 2),
etc. Thus, if a vertex has label x = (i1, i2, . . . , in) ∈ N , then it is the ithn child of its parent, which
is the ithn−1 child of its own parent and so on. If x = (i1, i2, . . . , in) and y = (j1, j2, . . . , jl) then we
will use the shorthand notation xy for the concatenation (i1, i2, . . . , in, j1, j2, . . . , jl), and with a slight
abuse of notation for i ∈ I, we use xi for (i1, i2, . . . , in, i).

There is a natural partial ordering ≺ on N , namely, x ≺ z if x is ancestor of z, so if ∃y ∈ N , y 6= ∅
such that z = xy. We use x � z meaning x ≺ z or x = z.
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We can identify a rooted ordered tree with the set of labels of the vertices, since this set already
identifies the set of edges in the tree. It is clear that a subset G ⊂ N may represent a rooted
ordered tree iff ∅ ∈ G, and for each (i1, i2, . . . , in) ∈ G we have (i1, i2, . . . , in − 1) ∈ G if in > 1, and
(i1, i2, . . . , in−1) ∈ G if in = 1.

We also think of N as the complete rooted ordered tree.
G will denote the set of all finite, rooted ordered trees. The degree of vertex x ∈ G will denote the

number of its children in G:

deg(x, G) := max{i ∈ I : xi ∈ G} (zero if x1 /∈ G)

The subtree rooted at a vertex x ∈ G is:

G↓x := {y : xy ∈ G} ,

this is just the progeny of x viewed as a rooted ordered tree.

2.1 The Model

Given a function w : I− → R+, referred to as the weight function, our randomly growing tree Υ(t) is
a continuous time, time-homogeneous Markov chain on the countable state space G, with initial state
Υ(0) = {∅}.

The jump rates are the following. Suppose that at some t ≥ 0 we have Υ(t) = G, then for each
x ∈ G which has deg(x,G) = j < K, the process may jump to G ∪ {xk} with rate w(deg(x,G))
where k = j + 1. This means that each existing vertex x ∈ Υ(t) ‘gives birth to a child’ with rate
w(deg(x, Υ(t))), independently of the others, and stops reproducing when reaches deg(x,Υ(t)) = K.

The Markov chain Υ(t) is well defined for t ∈ [0,∞), it does not blow up in finite time (see
comment at (3)).

We define the total weight of a tree G ∈ G as

W (G) :=
∑
x∈G

w(deg(x,G)) .

Described in other words, the Markov chain Υ(t) evolves as follows: assuming Υ(t−) = G, at time
t a new vertex is added to it with total rate W (G), and it is attached with an edge to exactly one
already existing vertex, which is x ∈ G with probability

w(deg(x,G))∑
y∈G w(deg(y,G))

.

Remark 2.1. This continuous-time model is essentially equivalent to another, discrete-time model
as follows. Define the stopping times

Sn := inf{t : |Υ(t)| = n + 1},

then the Markov-chain Υ(Sn) is also of interest. Indeed, it was in this framework that Barabasi and
Albert originally formulated their model [1]. The relation of the two models is discussed in details in
[11].

2.2 Some Additional Notation and Known Results

Let τx be the birth time of vertex x,

τx := inf{t > 0 : x ∈ Υ(t)} . (1)

Let σx be the time we have to wait for the appearance of vertex x, starting from the moment that its
birth is actually possible (e.g. when no other vertex is obliged to be born before him). Namely, let

(a) σ∅ := 0,
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(b) σy1 := τy1 − τy, for any y ∈ N ,

(c) and σyk := τyk − τy(k−1), for each y ∈ N and k ≥ 2, k ∈ I.

Let the function %̂ : (0,∞) → (0,∞] be defined as

%̂(λ) := E
K∑

k=1

e−λτk =
K∑

k=1

k−1∏
i=0

w(i)
λ + w(i)

. (2)

The function %̂ plays a central role in the theory of the branching processes related to our model, as
discussed in [11].1 However, in the present work we use little of that relation – instead, we list here
the known results that we will use.

1. The equation
%̂(λ) = 1

has a unique root λ∗ > 0. This λ∗ is called the Malthusian parameter.

2. This λ∗ gives the rate of exponential growth of the tree size almost surely. The normalized size
of the tree converges almost surely to a random variable, which we denote by

Θ := lim
t→∞

e−λ∗t|Υ(t)| .

3. Θ is almost surely positive, and
0 < EΘ < ∞, (3)

which implies (also) that almost surely the process Υ(t) does not blow up in finite time.

4. Moreover,
EΘ2 < ∞. (4)

The first statement is in our setting obvious from the definition, since we have assumed 2 ≤ K < ∞.
The second and third are shown in [11]. The last statement is also implicite from [11] – the variance is
even calculated. Alternatively, the finiteness of the variance follows from Theorem 6.8.1 in [6], which
states L2 convergence of the normalized size under the condition E[(

∑K
k=1 e−λτk)2] < ∞, which is

again obvious, since K < ∞.

Remark 2.2. The process Υ(t) has an alternative construction, which we state here and refer to later.
Define a countably infinite number of independent random variables σ̃x, indexed with the elements of
N , as follows. Let σ̃∅ = 0, and for x = i1i2 . . . in, let σ̃x be exponentially distributed with parameter
w(in − 1). Denoting the parent of x by p(x), we define τ̃∅ = 0 and

τ̃x = τ̃p(x) + σ̃p(x)1 + σ̃p(x)2 + . . . + σ̃p(x)in .

It is straightforward that with Υ̃(t) := {x ∈ N : τ̃x < t}, the process Υ̃ has the same distribution as
Υ.

2.3 Limiting Objects

For every x ∈ N , we introduce the variables Θx, corresponding to the growth of the subtree under x,
analogously to Θ,

Θx := lim
t→∞

e−λ∗(t−τx)|Υ↓x(t)| .

The letter Θ refers to the variable corresponding to the root. Clearly, for every x ∈ N , the random
variables Θx are identically distributed. The basic relation between the different Θx variables in the
tree is that for any x ∈ N ,

Θx =
K∑

k=1

e−λ∗(τxk−τx)Θxk , (5)

1The reason for the notation %̂ is that this function is the Laplace transform of the density of the point process formed
by birth times in the first generation of the tree.
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which is straightforward from |Υ↓x(t)| = 1 +
∑K

k=1 |Υ↓xk(t)|.
Now let us ask the following question. Fix a vertex x ∈ N , and at time t, draw a vertex ζt uniformly

randomly from Υ(t). What is the probability that ζt is descendant of x, so x ≺ ζt? As shown in (6)
below, this probability tends to an almost sure limit ∆x as t → ∞, which can be expressed using the
τ and Θ random variables,

∆x := lim
t→∞

|Υ↓x(t)|
|Υ(t)|

= e−λ∗τx lim
t→∞

e−λ∗(t−τx)|Υ↓x(t)|
e−λ∗t|Υ(t)|

=
e−λ∗τxΘx

Θ∅
. (6)

We can now, for any n ∈ N, define a random measure µn on the finite set {x : |x| = n} (on the nth

generation of the tree), by
µn({x}) := ∆x .

This is a probability measure almost surely, which follows from the facts ∆∅ = 1 and ∆y =
∑K

k=1 ∆yk.
Let Hn denote the entropy of µn, that is

Hn = −
∑
|x|=n

∆x log ∆x .

2.3.1 A Measure as the Limiting Object for the Tree

Let ∂N denote the set of leaves of the complete tree: ∂N = {1, 2, . . . ,K}∞. The concatenation
xy makes sense for x ∈ N and y ∈ ∂N , and then xy ∈ ∂N . Also, for x ∈ N and z ∈ ∂N , we
write x ≺ z if ∃y ∈ ∂N such that z = xy. For x ∈ N we denote the set of leaves under x by
∂N (x) = {z ∈ ∂N : x ≺ z}.

Let ∂N be equipped with the usual metric

d(x, y) = Λmax{n∈N : x|n=y|n} , (7)

where 0 < Λ < 1 is an arbitrary constant, typically chosen to be 1/e.
With the help of the µn random limiting measures, we define µ on the cylinder sets ∂N (x) of ∂N

by
µ(∂N (x)) := µn({x}) = ∆x , if |x| = n ,

and then we extend µ from ∪x∈N∂N (x) to ∂N . Our results concern the properties of this extended
random measure µ.

2.4 Results

Theorem 2.3. The limiting entropy

h := lim
n→∞

1
n

Hn

exists and is constant with probability one.

Theorem 2.4. The Hausdorff dimension dimH µ and the packing dimension dimP µ of the measure
µ is constant and equal with probability one, and h and the dimensions satisfy the relation

dimH µ = dimP µ =
h

− log Λ
, (8)

where Λ is from (7). Moreover, the local dimension of µ equals dimH µ = dimP µ at µ-almost every
point.

Theorem 2.5. Furthermore, an explicit formula for h is given:

h = E

(
K∑

i=1

λ∗τie
−λ∗τi

)
.

This can be computed given the weight function w.
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3 Main Line of the Proof

3.1 Idea of the Proof

The random limiting measure µ depends on the random growth of the tree. The idea of the proof is
the following: we define a random leaf in the limiting tree according to the measure µ. The way the
random leaf is defined is based on a step-by-step construction of the subsequent generations of the
limiting tree, together with a step-by-step construction of a path from the root to the random leaf.
This is done in such a way that the local dimension of the measure µ in this random point can be
computed as an ergodic average. (For the concept of entropy, Hausdorff and packing dimension of
random measures, and local dimension, see e.g. [5].) We can prove that this average is constant with
probability one, unconditionally. Thus, although the measure depends on the random tree growth,
this ergodic average is constant, and it is the local dimension of the measure in all the µ-typical leafs
of the limiting tree. This implies that this constant is the Hausdorff (and also the packing) dimension
of µ with probability one.

3.2 Markov Structure of the Tree

Definition 3.1. We say that a system of random variables (Yx)x∈N constitutes a tree-indexed
Markov field if for any x ∈ N , the distribution of the collection of variables (Yy : x ≺ y), and that of
(Yz : x 6� z), are conditionally independent, given Yx.

We state the following:

Lemma 3.2. For each x ∈ N let Vx denote the vector Vx := (σx, Θx). Then the collection of variables
Ax := (Vy : x ≺ y) and Bx := (Vz : x 6� z; σx) are conditionally independent, given Θx.

Proof. Recall Remark 2.2, the alternative construction of Υ(t). From that, it is straightforward that
the collection Ax is in fact constructed by the set of independent variables Ax := (σy : x ≺ y).

Similarly, recall (5), and decompose Θp(x), where p(x) is the parent of vertex x,

Θp(x) =
K∑

j=1

e−λ∗(τp(x)j−τp(x))Θp(x)j =
K∑

j=1

e−λ∗(σp(x)1+σp(x)2+...+σp(x)j)Θp(x)j .

This means that if we take the set of variables Bx := (σy : x 6≺ y), then Bx is constructed by Bx∪{Θx}.
Given Θx, the two collections Ax ∪ {Θx} and Bx ∪ {Θx} are conditionally independent, this way

the same is true for Ax and Bx, so the statement of the lemma follows.

Corollary 3.3. The variables (Θx)x∈N constitute a tree-indexed Markov field.

Proof. Direct consequence of Lemma 3.2, since Vx = (σx, Θx).

Definition 3.4. Let us introduce the following variables, indexed by N . For the root let R∅ := 1 and
for any other vertex y′ which has a parent y, so for any y′ = yk with k ∈ I, let

Ryk := lim
t→∞

|Υ↓yk(t)|
|Υ↓y(t)|

=
e−λ∗(τyk−τy)Θyk

Θy
=

∆yk

∆y
.

Notice that for x = (i1i2 . . . in), ∆x is a telescopic product,

∆x = ∆i1

∆i1i2

∆i1

∆i1i2i3

∆i1i2

. . .
∆i1...in

∆i1...in−1

= Ri1Ri1i2Ri1i2i3 . . . Ri1...in . (9)
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3.3 Construction of the Random Leaf

We will now give a different construction of the tree from the ones seen before. Namely, we construct
the system of Vx = (σx, Θx) variables starting from the root, and going step-by-step, from generation
to generation. Together with these, we compute the Rx and ∆x variables, and use them to construct
a random path {yn} from the root to the edge of the infinite tree. We will use this path in the proofs
of our results. For the sake of simple notation, we suppose for a moment that the maximum number
of children of any vertex is two, that is, K = 2. It is straightforward to construct the corresponding
generations and the random path for any K < ∞. For the rest of this section we treat the distribution
of Θ as known.

Recall that σ1, σ2, Θ1 and Θ2 are independent. Thus, from

Θ = e−λ∗σ1(Θ1 + e−λ∗σ2Θ2),

the conditional distribution of σ1, given Θ, is straightforward to calculate. Then, given Θ and σ1, the
conditional distribution of Θ1 follows. After this, given now Θ, σ1 and Θ1, the conditional distribution
of σ2 can be determined. Finally, if we know Θ, σ1, Θ1 and σ2, then Θ2 is a deterministic function of
these.

Now we can construct the generations, together with the random path yn, in the following steps.

1. Pick Θ∅ at random, according to its distribution, and fix σ∅ = 0. Also, fix y0 = ∅.
2. First generation

(a) Pick V1 = (σ1, Θ1) according to their conditional distribution, given Θ∅. These three
numbers define ∆1 = R1 = exp(−λ∗σ1)Θ1

Θ .
(b) Pick V2 = (σ2,Θ2) similarly, according to their conditional distribution, given Θ∅ and

(σ1, Θ1). At this point we can compute ∆2 = R2 = exp(−λ∗(σ1+σ2))Θ2

Θ∅
.

(c) Choose y1 according to P(y1 = 1) = R1 and P(y1 = 2) = R2.

3. Second generation

(a) Repeat the steps seen before for the progeny of vertex 1, to get V11, V12 and also R11 and
R12. This is done only using the information carried by Θ1, conditionally independently of
Θ and also of Θ2. This conditional independence is the consequence of Corollary 3.3. Since
we already know R1, we can now compute the values ∆11 = R1R11 and ∆12 = R1R12.

(b) Independently of the previous step, split Θ2 to get V21, V22, R21 and R22. We then also
have ∆21 and ∆22.

(c) Choose y2 from the children of y1, according to the conditional distribution given by the
Rx variables in the second generation. Namely, if y1 = 1,

P(y2 = 11|y1 = 1) = R11

P(y2 = 12|y1 = 1) = R12,

and if y1 = 2,

P(y2 = 21|y1 = 2) = R21

P(y2 = 22|y1 = 2) = R22.

4. Third generation

(a) In the same way, split Θ11, Θ12, Θ21 and Θ22 independently from each other, to get the
eight Rx and eight ∆x variables in the third generation.

(b) According to the value of y2, choose y3 from its children, according to the corresponding
Rx distribution.

5. Subsequent generations are constructed similarly.

Proposition 3.5. The distribution of {Vx}x∈N in the above construction is identical to the distribu-
tion in the randomly growing tree model.
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Proof. The statement we are proving is about the joint distribution of contably infinitely many (real-
valued) random variables, so this joint distribution is a measure on RN, with the σ-algebra of mea-
surable sets being the σ-algebra generated by cylinder sets – defined in terms of finitely many of the
σx and Θx. So to prove that the two measures on RN – given by the two constructions – coincide, it
is enough to see that they coincide on such cylinder sets.

In terms of joint distributions: It is enough to see that the distributions of {Vx}x∈N coming
from the two constructions have identical finite-dimensional marginals. In particular, it is enough to
show that for every n, the distribution of {Vx}x∈N ,|x|≤n in the above construction is identical to the
distribution in the randomly growing tree model.

This is easy to see by induction:

• For n = 0 we have chosen the law of Θ∅ properly by construction, also σ∅ = 0 as it should be.

• For n = 1, the {Vx}x∈N ,|x|=1 are construced to have the right conditional joint distribution,
given Θ∅, so the n = 0 statement implies the n = 1 statement. In particular, the Θx for |x| = 1
are distributed as they should be.

• For n ≥ 2, the same argument (the construction) gives inductively that the joint distribution of
the {Vx}x∈W is what it should be, for any family W of x-es which consists of a vertex and its
children. However, the construction also ensures the conditional independence of {Vy}x≺y and
{Vz}x 6�z given Θx, as in Lemma 3.2. This, together with the joint distributions of the {Vx}x∈W

(with W as above) already characterizes the joint distribution of {Vx}x∈N ,|x|≤n.

Definition 3.6. Let Υ denote the full tree evolution, namely, the σ-algebra generated by {σx | x ∈ N}.

Note that for any x ∈ N , Θx is measurable with respect to Υ, so Υ is also the σ-algebra generated
by {σx, Θx | x ∈ N}, namely all the data about the tree – but not about the random leaf – during
the parallel construction of the tree and the random leaf just presented.

The usefulness of the random leaf we constructed is shown by the following:

Lemma 3.7. Conditioned on Υ, the conditional distribution of the leaf limn yn is exactly the measure
µ. Similarly, the conditional distribution of yn is exactly µn.

Proof. The second statement can be seen by induction: µ0 obviously gives weight 1 to the single
point ∅ = y0. Later, by construction of yn+1, for any x ∈ N with |x| = n and any k ∈ I we have
P(yn+1 = xk | yn = x,Υ) = Rxk, so if we assume inductively that P(yn = x |Υ) = µn(x) = ∆x, then
P(yn+1 = xk |Υ) = ∆xRxk = ∆xk = µn+1(xk) for any |xk| = n + 1, so yn+1 is indeed distributed
according to µn+1.

The first statement is an immediate consequence of the second, since for any cylinder set ∂N (x),
if |x| = n, we have P(y∞ ∈ ∂N (x) |Υ) = P(yn = x |Υ) = µn(x) = µ(∂N (x)).

Corollary 3.8. Conditioned on the tree, the conditional expectation of − log ∆yn is exactly Hn.

Proof. Indeed, by the above lemma,

E(− log ∆yn |Υ) = −
∑
|x|=n

P(yn = x |Υ) log ∆x = −
∑
|x|=n

µn(x) log ∆x = −
∑
|x|=n

∆x log ∆x = Hn.

3.4 Markov Chains Along the Random Path

The key to the proof is the following easy observation:

Proposition 3.9. The stochastic process Xn = Θyn (n = 0, 1, 2, . . . ) is a homogenious Markov chain.
By “homogenious” we mean that the transition kernel does not depend on n.

Proof. This is clear from the construction in Section 3.3. Indeed, when constructing Θyn , only the
value of Θyn−1 is used, and the construction is the same on every level.
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The reason to construct in Section 3.3 the entire tree of pairs (Θx, ∆x) step by step – and not just
the path yn on an already existing tree – was exactly to make the Markovness of Θyn obvious.

Let P denote the transition kernel – that is, P (t) is the conditional distribution of Xn+1 under
the condition Xn = t (for every t ∈ R+). We also use it as the operator acting on measures by
ηP =

∫
R+ P (t) dη(t).

Proposition 3.10. The transition kernel P of the Markov process Xn = Θyn has exactly one invariant
measure.

Proof. We first show from the decomposition (5) that the distribution of Θ is equivalent to Lebesgue
measure on R+. Indeed, the fact that Θ is of the form Θ = e−λ∗σ1Θ̂ where σ1 is independent of Θ̂,
immediatly implies that Θ must be equivalent to Lebesgue on the interval from zero to its maximal
value. On the other hand, Θ ≥ e−λ∗σ1Θ1 + e−λ∗(σ1+σ2)Θ2 implies that Θ is not bounded, since Θ1

and Θ2 are independent and distributed as Θ, and their pre-factors can be arbitrarily close to 1.
From this and the construction in Section 3.3 it is clear that P (t) is equivalent to Lebesgue (on

R+, of course) for every t ∈ R+. As a consequence, for any measure η on R+, the first iterate ηP
is already equivalent to Lebesgue. This implies that any invariant measure η = ηP is equivalent to
Lebesgue, so any two invariant measures are equivalent.

Suppose now indirectly that there exist two different invariant probability measures. Then two
different extremal invariant probability measures also have to exist. But two different extremal invari-
ant probability measures must be mutually singular, which contradicts the previous argument. Thus
there is at most one invariant probability measure.

The existence follows from Lemma 3.12 and Lemma 3.11. Indeed, the limiting measure ν of
Lemma 3.11 has to be invariant by Lemma 3.12.

Lemma 3.11. The sequence of random variables Xn = Θyn is weakly convergent to some measure ν
on R+.

To keep our arguments easy to follow, we delay the proof to Section 4.2.

Lemma 3.12. P is continuous with respect to weak convergence of measures.

The proof is delayed to Section 4.3.

Corollary 3.13. The stochastic process Yn = (Θyn , Ryn) (n = 1, 2, . . . ) is a homogenious Markov
chain, for which the transition kernel has exactly one invariant measure.

Proof. Notice that during the construction of the tree in Section 3.3, Ryn is constructed by using
only the value of Θyn−1 (not even Ryn−1), in a time-homogenious way. Thus Yn is really homogenious
Markov. Let P̃ denote the transition kernel. From the construction, η̃P̃ depends only on the first
marginal of η̃, and on this marginal it acts exactly like P . So for any measure ν̂ with first marginal ν,
ν̃ := ν̂P̃ is invariant by the invariance of ν under P . The uniqueness is obvious from the uniqueness
of ν.

Corollary 3.14. the limit h := − limn→∞
1
n log ∆yn exists and is constant with probability one.

Proof. − log Ryn is an observable on the state space of Yn, and h is exactly the ergodic average of this
observable by (9). So it is guaranteed to be constant by the unique existence of the invariant measure
and Theorem 1.1 in Chapter X of [3]. We give the details of the (standard) argument now.

Theorem 1.1 in chapter X of [3] states that “If {xn, n ≥ 0} is a stationary Markov process, and
if z is an invariant random variable, then z is measurable on the sample space of x0”. To formally
apply this theorem to our process, we first need to construct a stationary version of Yn. Namely,
let Ỹn be the Markov process with generator P̃ started from Ỹ0 which is distributed according to
the unique invariant measure ν̃. For this process, the ergodic average of an observable, being an
invariant random variable (see [3], Chapter X for the definition), is by the above theorem measurable
on the state space – that is, constant with probability one, conditioned on the inital value (more
precisely, for ν̃-a.e. initial value). But in our case, this constant is indeed independent of the initial
value – actually, it is constant for every initial value, since P̃ brings any measure (e.g. a point measure
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concentrated on any point) into a measure equivalent with ν̃. Now notice that the property that
the ergodic average is the same constant with probability one, independently of the initial state, is a
property of the transition kernel P̃ only (and not of Ỹn as a stochastic process), so it also holds for
the process Yn.

Remember that 1
nHn is a conditional expectation of − 1

n log ∆yn by Corollary 3.8. So since we have
just shown the almost sure convergence of − 1

n log ∆yn , the almost sure convergence of 1
nHn follows,

if we have e.g. dominated convergence. This will be guaranteed by the following lemma.

Lemma 3.15. Let µ be an arbitrary Borel probability measure on ∂N , with K < ∞. Using the
notation in 2.3.1, for every x ∈ ∂N let

fn(x) := − 1
n

log µ(∂N (x|n)).

Then f̄ := supn fn is integrable with respect to the measure µ.

The proof is delayed to Section 4.1. Now we are ready to prove the main results of the paper.

Proof of Theorem 2.3. For every x ∈ ∂N let fn(x) = − 1
n log µn({x|n}) = − 1

n log µ(∂N (x|n)). By
Lemma 3.7, Corollary 3.14 states exactly that for almost every realization of the tree, fn(x) converges
µ-almost surely to h.

Now divide the statement of Corollary 3.8 by n to get

1
n

Hn = E
(
− 1

n
log ∆yn |Υ

)
=
∫

− 1
n

log(µn({x})) dµn(x) =
∫

fn(x) dµ(x).

We can now apply the dominated convergence theorem to finish the proof, since we can use the
supremum as an integrable dominating function, see Lemma 3.15.

Proof of Theorem 2.4. We first show the second statement of the theorem by showing that the local
dimension of µ at the leaf limn yn is exactly h

− log Λ where h is from Corollary 3.14. Let B(x, r) denote
the r-neighbourhood of the point x ∈ ∂N w.r.t the metric (7). For r = Λn, this neighbourhood is
formed exactly by the descendants of x|n, so B(x,Λn) = ∂N (x|n). The µ-measure of this set is

µ(B(x, Λn)) = µ(∂N (x|n)) = µn({x|n}) = log ∆x|n ,

while the logarithm of the diameter of this set is n log Λ. Thus the local dimension of µ at the leaf x
is

dimloc µ(x) = lim
n→∞

µ(B(x,Λn)
nΛ

= lim
n→∞

− 1
n log ∆x|n
− log Λ

(if this limit exists), by the definition in [5] (2.15) and (2.16).
Applying that to x = limn yn, Lemma 3.7 and Corollary 3.14 say that this limit indeed exists and

is equal to h
− log Λ for µ-almost every x, which is what we wanted to show.

The first statement of the theorem in now an immedite consequence of the definitions of the
Hausdorff and packing dimension of a measure in [5] (10.8) and (10.9)

4 Proofs

4.1 The lemma for dominated convergence of the entropies

In this section we prove Lemma 3.15.

Proof of Lemma 3.15. For arbitrary M < ∞, let us define the set

F
(n)
M := {x : fn(x) ≥ M} = {x : − 1

n
log µ(∂N (x|n)) ≥ M} = {x : µ(∂N (x|n)) ≤ e−nM}.

10



Since fn takes constant values on the Kn cylinder sets, we have

µ(F (n)
M ) ≤ Kne−nM =

(
Ke−M

)n
. (10)

Now we define
FM := {x : f̄(x) > M} =

∪
n

{x : fn(x) > M} ⊆
∪
n

F
(n)
M .

By (10), for M > log(2K),

µ(FM ) ≤
∞∑

n=1

(
Ke−M

)n
< 2Ke−M .

Thus, since f̄ ≥ 0,∫
f̄(x) dµ(x) <

∞∑
M=1

Mµ({x : M − 1 ≤ f̄(x) < M}) < ∞.

4.2 Limiting Distribution of Θyn
Along the Random Path

In this section we prove Lemma 3.11. We begin with three lemmas of elementary probability whose
statements do not rely on the setting of the paper.

The first one is a trivial generalization of the ordinary weak law of large numbers. We could call
it “Weak law of large numbers with arbitrary weights”. For this purpose, we will consider a sequence
of probability vectors {pn}∞n=1, where, again, each pn is a probability vector pn = (pn

1 , pn
2 , . . . , pn

Nn
).

We plan to calculate weighted averages of independent random variables with weight vectors pn. We
expect such an average to be close to the expectation, if every term has a sufficiently small weight.
So we will say that the sequence {pn}∞n=1 is proper if

lim
n→∞

max{pn
j |1 ≤ j ≤ Nn} = 0

.

Lemma 4.1. Let ν0 be a probability distribution on R with finite expectation m. Let {pn}∞n=1 be a
proper sequence of weight vectors, and let νn be the distribution of

Nn∑
j=1

pn
j Zj

where Z1, Z2, . . . , ZNn are independent random variables with distribution ν0. Then

νn ⇒ m.

Note that this is the usual weak law if pn
j = 1

n (j = 1, . . . , n).

Proof. The proof is trivial following the standard proof of the weak law with characteristic functions.

Now we turn to a lemma which could be called “size biased sampling with arbitrary extra weights”.
For this purpose, let p = (p1, p2, . . . , pN ) be a probability vector, and let Z1, Z2, . . . , ZN be random
variables on R+ (meaning P(Zj > 0) = 1). We will say that the random variable V is the sized biased
random choice from Z1, Z2, . . . , ZN with extra weights p1, p2, . . . , pN , if it is constructed the following
way:

1. Generate a realization of (Z1, Z2, . . . , ZN ), and call it (z1, z2, . . . , zN ).

11



2. Having that, choose a random integer J from the index set {1, 2, . . . , N} with the weight

pjzj∑N
j=1 pjzj

given to each j.

3. Set V = zJ .

Note that this is the usual size biased random choice if all the pj are equal. Our lemma states that
this sized biased random choice with extra weights behaves just like the ordinary one, provided that
every weight is small.

To state the lemma, let ν0 be a probability distribution on R+ with finite expectation m. We will
say that the measure ν is the size biased version of ν0, if it is absolutely continuous with respect to
ν0, and the density is ρ(t) = 1

m t. In other words, ν(A) = 1
m

∫
A tdν0(t).

Lemma 4.2. Let ν0 be a probability distribution on R+ with finite expectation m. Let {pn}∞n=1 be
a proper sequence of weight vectors, and (for each n) let Zn

1 , Zn
2 , . . . , Zn

Nn
be independent random

variables with distribution ν0. Let Vn be the random choice from Zn
1 , Zn

2 , . . . , Zn
Nn

with extra weights
pn
1 , pn

2 , . . . , pn
Nn

. Let ν be the size biased version of ν0. Then

Vn ⇒ ν.

Proof. Let F denote the cumulative distribution function of ν, that is, F (t) = ν([0, t)). Let Fn denote
the cumulative distribution function of Vn. For some fixed t, we write it in the form

Fn(t) = E(P(Vn < t | {Zn
j }Nn

j=1)). (11)

The conditional probability inside is just the weight of j-s with Zj < t, so

P(Vn < t | {Zn
j }Nn

j=1) =

∑Nn
j=1 pn

j Zn
j 11(Zn

j < t)∑Nn
j=1 pn

j Zn
j

.

According to Lemma 4.1 the denominator converges weakly (and thus, in probability) to E(Zn
1 ) =

m > 0 as n → ∞. Similarly, the numerator converges in probability to

E(Zn
1 11(Zn

1 < t)) =
∫

R+

t̃11(t̃ < t) dν0(t) = mν([0, t)).

This implies that the quotient converges weakly to ν([0, t)) = F (t). Since this quotient is a conditional
probability, it is obviously bounded by 1, so (11) implies that Fn(t) → F (t).

The following lemma is just a re-statement of the previous one. This is the form that we will use.

Lemma 4.3. Let ν0 be a probability distribution on R+ with finite expectation, and let ν be its size
biased version. Let φ be a bounded continuous function on R+. Then for every ε > 0 there exists a
δ > 0 such that for any probability vector (p1, p2, . . . , pN ) which satisfies that

max{pj | 1 ≤ j ≤ N} ≤ δ,

if Z1, Z2, . . . , ZN are independent with distribution ν0, then the sized biased random choice (called V )
from Z1, Z2, . . . , ZN with extra weights p1, p2, . . . , pN satisfies

|E(φ(V )) −
∫

φ(t) dν(t)| < ε.

Before provig Lemma 3.11, we need one more tiny statement about the structure of the growing
tree.
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Lemma 4.4. For any vertex x ∈ N , let

Tx = e−λ∗τx , (12)

and for every x with |x| = n let

px =
Tx∑

|y|=n Ty
.

Then the series pn,max := max{px | |x| = n} converges to zero in probability.

Proof. We prove the stronger statement that pn,max converges to zero with probability one. We use
the form

pn,max =
max{Tx | |x| = n}∑

|y|=n Ty
. (13)

We show that the numerator converges to zero with probability one, while the denominator con-
verges to a positive limit with probability one.

1. If the numerator does not converge to zero, then there is some ε > 0 and there are infinitely
many vertices x ∈ N with Tx > ε. Then, for all these x we have τx < τ∗ := − log ε

λ∗ , so infinitely
many vertices are born within the finite time τ∗. This is known to have probability zero – see
comment at (3).

2. Iterating the decomposition of Θ, we get

Θ =
∑
|x|=n

TxΘx. (14)

Let Σn denote the σ-algebra generated by {σx | x ∈ N , |x| ≤ n} – that is, the complete history
of the tree growth up to the n-th level. Similarly, let Σ denote the σ-algebra generated by
{σx | x ∈ N}. Clearly Σn ⊂ Σn+1, Σ is generated by ∪nΣn, and Θ is Σ-measurable. So Lévy’s
‘upward’ theorem ensures that E(Θ | Σn) → Θ with probability one. However, if |x| = n, then
Θx is independent of Σn, while Tx is Σn-measurable, so (14) implies that

E(Θ | Σn) =
∑
|x|=n

TxEΘx = EΘ
∑
|x|=n

Tx,

so with probablility one the denominator of (13) converges to Θ
EΘ 6= 0.

Now we can complete the goal of this subsection:

Proof of Lemma 3.11. Actually we give the limit explicitely. Let ν be the measure on R+ with density
function cxh(x), where h(x) is the density of Θ, and c = 1

EΘ is a normalizing constant. We will show
that

Xn ⇒ ν. (15)

Let us look directly at Xn = Θyn for some fixed n. This can also be constructed in the following way:

1. Generate the birth times τx for all vertices x with |x| = n (that is, on the n-th level of the tree).
This defines the values Tx = e−λ∗τx , |x| = n. For better transparency, let us normalize these
values to get a probability distribution on the n-th level of the tree: px := Tx

P

|z|=n Tz
(for |x| = n).

2. Also generate the random variables Θx for |x| = n, which are independent of the px.

3. Now yn is chosen from the points |x| = n according to the distribution µn, so the weight given
to some x is

∆x∑
|z|=n ∆z

=
TxΘx∑

|z|=n TzΘz
=

pxΘx∑
|z|=n pzΘz

.

13



So, having the values px fixed, the value Xn = Θyn is the result of a size biased sampling from the
independent random variables Θx, |x| = n, with additional weights px – just like in the context of
Lemma 4.2 and Lemma 4.3.

Now we can prove (15). Let φ be a fixed bounded continuous function on R+, let Mφ be an upper
bound of |φ|, and let mφ =

∫
R+ φ dν (which satisfies |mφ| ≤ Mφ). Let ε > 0 be arbitrary.

Choose δ > 0 according to Lemma 4.3 so that if all the px on some level |x| = n are at most δ,
then ∣∣E (φ(Xn) | {px}) − mφ

∣∣ < ε.

Lemma 4.4 implies that there exists an n0 such that for all n > n0,

P(max{px : |x| = n} > δ) <
ε

2Mφ
.

Let Ωn,δ denote the event that max{px : |x| = n} ≤ δ. For n > n0 we get∣∣E (φ(Xn)) − mφ

∣∣ ≤ ∫ ∣∣E (φ(Xn) − mφ | {px})
∣∣dP =

=
∫

Ωc
n,δ

∣∣E (φ(Xn) − mφ | {px})
∣∣ dP +

∫
Ωn,δ

∣∣E (φ(Xn) − mφ | {px})
∣∣dP ≤

≤ 2MφP
(
Ωc

n,δ

)
+
∫

Ωn,δ

ε dP ≤ ε + ε = 2ε.

4.3 Weak Continuity of the Transition Kernel

This section is devoted to the proof of Lemma 3.12.

Proof of Lemma 3.12. From the construction of the process Xn it is clear that the transition kernel
P can be written as (ηP )(B) =

∫
R+

∫
B k(t, s) dsdt where the kernel function k(t, s) is continuous in

the first variable (actually it is continuous in both variables). The following lemma – which is a pure
probability statement – says that such a kernel is continuous with respect to weak convergence of
measures.

Lemma 4.5. Let k : R+ × R+ → R+ be a function continuous in the first variable, such that for
every t ∈ R+ the function k(t, .) is a probability density on R+ – that is,

∫
R+ k(t, s) ds = 1. Let the

operator P be defined on probability measures by

(ηP )(B) :=
∫

R+

∫
B

k(t, s) dsdt

for every probability measure η on R+ and every Borel set B ⊂ R+. Then P is continuous with respect
to weak convergence of measures.

This lemma is an easy consequence of the following:

Lemma 4.6. Let k : R+ × R+ → R+ be a function as in Lemma 4.5, and for every t ∈ R+ let Kt

denote the measure on R+ with density k(t, .). Then if tn is a sequence in R+ converging to t, then
Ktn converges to Kt weakly.

Proof. By assumption, {k(tn, .)}∞n=1 is a sequence of density functions converging pointwise to the
density function k(t, .). This implies weak convergence of the corresponding measures through the
Fatou lemma: for any Borel set B ⊂ R+

lim inf
n→∞

Ktn(B) = lim inf
n→∞

∫
B

k(tn, s) ds
Fatou
≥

∫
B

lim inf
n→∞

k(tn, s) ds =
∫

B
k(t, s) ds = Kt(B),

similarly
lim inf
n→∞

Ktn(Bc) ≥ Kt(Bc),

14



which implies
lim sup

n→∞
Ktn(B) = 1 − lim inf

n→∞
Ktn(Bc) ≤ 1 − Kt(Bc) = Kt(B).

These together give
Ktn(B) → K(B).

Proof of Lemma 4.5. Let φ : R+ → R be bounded and continuous and let ηn be a sequence of measures
on R+ converging weakly to η. By the definition of P ,∫

R+

φ d(ηnP ) =
∫

R+×R+

k(t, s)φ(s) d(ηn(t) × Leb(s)) =

=
∫

R+

[∫
R+

k(t, s)φ(s) ds

]
dηn(t).

The function
φ̄(t) :=

∫
R+

k(t, s)φ(s) ds

is obviously bounded, and also continuous: this is exactly the statement of Lemma 4.6. But then the
weak convergence of ηn to η means exactly that∫

R+

φ̄(t) dηn(t) →
∫

R+

φ̄(t) dη(t),

so we have ∫
R+

φ d(ηnP ) →
∫

R+

φ̄(t) dη(t) =
∫

R+

φ d(ηP )

for every bounded continuous φ, which is exactly what we want to prove.

5 Computation of the Entropy

Proof of Theorem 2.5. We know that 1
nHn = − 1

n

∑
|x|=n ∆x log ∆x converges almost surely to some

constant h, and this constant is equal to the limit of the expected values. For this section we use the
shorthand notation already introduced in (12),

Tx = e−λ∗τx .

To compute h, first observe that

E
∑
|x|=n

∆xΘ log(∆xΘ) = E

∑
|x|=n

Θ∆x log ∆x

+ E

(Θ log Θ)
∑
|x|=n

∆x

 =

E

Θ
∑
|x|=n

∆x log ∆x

+ E (Θ log Θ) ,

where we have used that
∑

|x|=n ∆x = 1 by definition.
Next we observe that on the other hand, the same expression can be written as

E
∑
|x|=n

∆xΘ log(∆xΘ) = E
∑
|x|=n

TxΘx log (TxΘx) =

E

∑
|x|=n

ΘxTx log (Tx)

+ E

∑
|x|=n

TxΘx log Θx

 =

∑
|x|=n

(EΘx)E (Tx log Tx) +
∑
|x|=n

E (Tx)E (Θx log Θx) =

(EΘ)E
∑
|x|=n

(Tx log Tx) + E (Θ log Θ)E

∑
|x|=n

Tx

 ,
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where we have used that for any x ∈ N , Θx and τx are independent. Recall that E
(∑

|x|=n Tx

)
= 1.

Since (4) implies that E (Θ log Θ) < ∞, comparing the two formulae gives the conclusion

E

Θ
∑
|x|=n

∆x log ∆x

 = (EΘ)E

∑
|x|=n

Tx log Tx

 . (16)

We compute the right-hand side with an induction,

An := E

∑
|x|=n

Tx log Tx

 = E

 ∑
|y|=n−1

K∑
i=1

Tyi log Tyi

 =

(
E

K∑
i=1

e−λ∗(τyi−τy)

)
E

 ∑
|y|=n−1

Ty log Ty

+

E
∑

|y|=n−1

Ty

E

(
K∑

i=1

e−λ∗(τyi−τy) log e−λ∗(τyi−τy)

)
=

An−1 + E

(
K∑

i=1

Ti log Ti

)
,

so

An = nE

(
K∑

i=1

Ti log Ti

)
.

Now write this back to (16) to get

E
(

Θ
1
n

Hn

)
= (EΘ)E

(
−

K∑
i=1

Ti log Ti

)
.

Since lim 1
nHn = h almost surely, 1

nHn is bounded and EΘ < ∞ , dominated convergence gives

h = E

(
−

K∑
i=1

Ti log Ti

)
.

Recalling (12), the proof of the theorem is complete.

Remark 5.1. This value can be explicitly calculated, as soon as the weight function is given, since the
τi variables are the sum of independent, exponentially distributed random variables with parameters
(w(j))i−1

j=0. Alternatively, with the function %̂ defined in (2),

h = λ∗ d%̂(λ)
dλ

∣∣∣
λ=λ∗

.

6 Outlook

The present result is restricted to the K < ∞ case, e.g. when a vertex can only have finitely many
children. This property is used in two places. First, Theorem 2.3 relies on Lemma 3.15, which is
a very rough estimate working for finite K only. Second, in the proof of Theorem 2.5 we use the
fact that 1

nHn is bounded. So the main result about the Hausdorff dimension, Theorem 2.4 could
be shown in greater generality. However, not having the explicit formula of Theorem 2.5 is a serious
drawback. We believe that the problem can be solved – and the validity of the explicit formula can be
shown – for a large class of rate functions with K = ∞ by a detailed analysis of the transition kernel
P . Such an analysis is could be avoided in the present paper by the study of the limiting distribution
in Section 4.2. We plan to return to that in the future.
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PD73609.

References
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