Kevei Péter (Szeged)
On the diminishing process of Bálint TóthAbstractLet K and K0 be convex bodies in Rd, such that K contains the
origin, and define the process (Kn,pn), n≥0, as follows: let
pn+1 be a uniform random point in Kn, and set
Kn+1 = Kn ∩ (pn+1 + K). Clearly, (Kn) is a nested sequence of convex bodies
which converge to a non-empty limit object, again a convex body in
Rd. First, we investigate the process in one dimension, when
K=[-1,1]. In this case the limit set is a unit interval, and the
distribution of its center has the arcsine law. Further, we study this
process for K being a regular simplex, a cube, or a regular convex
polygon with an odd number of vertices.
This is joint work with Gergely Ambrus and Viktor Vigh.
UNUSUAL TIME / SZOKATLAN IDŐPONT
2014.07.17 Thursday, 17:15
Farkas Lóránt (Budapest)
Universal Error Exponent for Discrete Asynchronous Multiple Access ChannelsAbstractWe derive an error exponent for frame-asynchronous discrete memoryless multiple access system with two senders. Moreover, our coding/decoding scheme is universal. This have been done by extending Csiszár-Körner-Marton's packing lemma to asynchronous system and using a modified "maximal multi-information" decoder. This aforementioned extension is quite straightforward, employing the new concept of sub-types introduced by us. This joint result with Tamás Kói will be presented at the annual Information Theory Symposium (ISIT 2014).
Some new corollaries will be presented:
- The universal exponent is strictly positive inside the capacity region. This admits us to deal with the compound asynchronous model.
- The new concept of "Controlled Asynchronism" is defined. In some cases, this gives a better exponent than the synchronous counterpart (we present an example).
- It seems a new single user detection algorithm is defined, which can be used to detect multiple access system.
2014.06.12 Thursday, 17:15
Kói Tamás (Budapest)
Random Access and Source-Channel Coding Error Exponents for Multiple Access ChannelsAbstractWe address a version of the random access model of J. Luo and A. Ephremides (supplemented by Z. Wang and J. Luo), which is similar to a model studied for one-way channels by I. Csiszar. The results of I. Csiszar are generalized to (discrete memoryless) multiple access channels (MACs). A two-senders random access model is introduced, in which the senders have codebook libraries with constant composition codebooks for multiple rate choices. The error exponent of Y. Liu and B.L. Hughes for an individual codebook pair is shown to be simultaneously achievable for each codebook pair in the codebook libraries, supplemented with collision detection. This is achieved via universal decoder. Moreover, achievable joint source-channel coding error exponents for transmitting independent sources over a MAC are given, admitting improvements when error free 0 rate communication is allowed between the two senders. The most direct extension of the results of I. Csiszar is obtained in the latter case.
The work is joint with Lorant Farkas. Manuscript can be downloaded from http://arxiv.org/pdf/1301.6412v3.pdf
2014.06.12 Thursday, 16:15
Nic Freeman (Bristol)
Selection and dimensionAbstractI will describe the Spatial Lambda-Fleming-Viot process,
which is a recent model of evolution in a spatial continuum, and
explore the time and spatial scale on which selectively advantageous
genes propagate through space. The appropriate scaling depends on the
dimension of space, resulting in three distinct cases (d=1, d=2 and
d>=3). In d=1 I will outline why, in this case, the limiting genealogy
is the Brownian net.
2014.05.22 Thursday, 17:15
Edward Crane (Bristol)
Forest fires and explosionsAbstractThe mean field forest fire model was introduced by Ráth and
Tóth in 2009. The model is a continuous-time Markov process on the
space of graphs on n labelled vertices. As in the dynamical
Erdős-Rényi model, edges appear independently at rate 1/n per edge,
with the result that increasingly large clusters of connected vertices
form. Independently, each vertex is struck by lightning at some rate
depending on n; when this happens all the edges in the cluster of that
vertex instantaneously disappear. Ráth and Tóth showed that for
suitable values of the lightning rate, the system exhibits
self-organized criticality in the large n limit.
Building on their work, we study the local limit of the model,
understanding how the process appears from the point of view of a
single vertex, as the size of the model tends to infinity. The limit
can be understood as an explosive Markov branching process with a
deterministically varying offspring distribution. The environment
evolves according to an infinite system of ODEs called the critical
forest fire equations, which are a simple modification of the
well-known Smoluchowski coagulation equations with multiplicative
kernel.
Finally we explain how the Brownian continuum random tree arises as
the scaling limit of the large clusters.
(Joint work with Nic Freeman and Bálint Tóth)
2014.05.22 Thursday, 16:15
Virág Bálint (Toronto/Budapest)
Mean quantum percolationAbstractIt is an open problem whether the limiting eigenvalue distribution
of percolation in a large box has an absolutely continuous part.
Similarly, it is not known whether the analogue of the Wigner
semicircle law for a sparse Erdos-Renyi random matrix has an
absolutely continuous part.
In joint work with Charles Bordenave and Arnab Sen we can show
that non-atomic part exists in many models. I will review the
background and some new methods.
2014.05.15 Thursday, 16:15
Erwin Bolthausen (Zurich)
On the localization-delocalization critical line of the random copolymer2014. 04.17 Thursday, 16:15
Ayalvadi Ganesh (Bristol)
Thresholds for the contact process on general graphsAbstractWe consider the contact process (SIS epidemic) on finite graphs. Unlike
infinite graphs, which can exhibit a phase transition between the process
surviving forever and becoming extinct, the process always dies out on
finite graphs. Nevertheless, there is a signature of the phase transition in
that the process lifetime can show a sharp change on large graphs, between
being logarithmic and exponential in the number of nodes.In this talk, we
will give necessary conditions for these two regimes, of short-lived and
long-lived contact processes, in terms of graph properties, namely the
spectral radius and the isoperimetric constant. We will also discuss when
these match, implying a sharp threshold between these regimes. We will
extend the results to some commonly used random graph models. Finally, we
will discuss an application of these ideas to the optimal allocation of
"curing resources" in an epidemic.
2014. március 27. Csütörtök, 17:15
Stanislav Volkov (Lund)
On random geometric subdivisionsAbstractI will present several models of random geometric subdivisions, similar to
that of Diaconis and Miclo (Combinatorics, Probability and Computing, 2011),
where a triangle is split into 6 smaller triangles by its medians, and one
of these parts is randomly selected as a new triangle, and the process
continues ad infinitum. I will show that in a similar model the limiting
shape of an indefinite subdivision of a quadrilateral is a parallelogram. I
will also show that the geometric subdivisions of a triangle by angle
bisectors converge (but only weakly) to a non-atomic distribution, and that
the geometric subdivisions of a triangle by choosing a uniform random points
on its sides converges to a flat triangle, similarly to the result of the
paper mentioned above.
2014. március 27. Csütörtök, 16:15
Bolla Marianna (BME)
Spektrális klaszterezés (gráfok és kontingenciatáblák)nyilvános habilitációs előadás tudományos része
2014. március 20. Csütörtök, 16:15
Unusual place: BME H épület 607.
Tóth Bálint (Budapest/Bristol)
CLT for random walk in divergence-free random drift field: H_{-1} Suffices - CHT divergenciamentes véletlen kozegű bolyongásra: H_{-1} ElégségesÜNNEPI ELŐADÁS A SZEMINÁRIUM MŰKÖDÉSÉNEK 15. ÉVFORDULÓJA ALKALMÁBÓL
2014. február 20. Csütörtök, 16:15
Harangi Viktor (Toronto)
Független halmazok, lokális algoritmusok és véletlen sajátvektorok / Independent sets, local algorithms, random eigenvectorsAbstractEgy gráf csúcsainak egy halmaza független, ha a halmaz semelyik két
csúcsa között nem megy él. Egy természetes és fontos gráfparaméter az
ilyen független halmazok maximális mérete egy adott gráfban, ezt a
gráf függetlenségi számának nevezzük.
Véletlen reguláris gráfokban először Bollobás adott felső becslést a
függetlenségi számra. Azóta számos fejlemény történt, ebben az
előadásban elsősorban lokális algoritmussal megkonstruálható
(véletlen) független halmazokról lesz szó. Egy új megközelítés a gráf
minimális sajátértékét és az ahhoz tartozó véletlen sajátvektorokat
használ.
Az elődás Csóka Endrével, Gerencsér Balázssal, Virág Bálinttal közös
munkákon alapul.
A JAN.23i ELŐADÁS FOLYTATÁSA
2014. február 6. Csütörtök, 16:15
Harangi Viktor (Toronto)
Független halmazok, lokális algoritmusok és véletlen sajátvektorok / Independent sets, local algorithms, random eigenvectorsAbstractEgy gráf csúcsainak egy halmaza független, ha a halmaz semelyik két
csúcsa között nem megy él. Egy természetes és fontos gráfparaméter az
ilyen független halmazok maximális mérete egy adott gráfban, ezt a
gráf függetlenségi számának nevezzük.
Véletlen reguláris gráfokban először Bollobás adott felső becslést a
függetlenségi számra. Azóta számos fejlemény történt, ebben az
előadásban elsősorban lokális algoritmussal megkonstruálható
(véletlen) független halmazokról lesz szó. Egy új megközelítés a gráf
minimális sajátértékét és az ahhoz tartozó véletlen sajátvektorokat
használ.
Az elődás Csóka Endrével, Gerencsér Balázssal, Virág Bálinttal közös
munkákon alapul.
2014. január 23. Csütörtök, 16:15