Berkes István (TU Graz and Rényi Inst.)
Paul Lévy néhány elfelejtett eredményeAbstractA valószinűségszámitás egyik klasszikus problémája független valószinűségi
változók részletösszegei határeloszlásainak leirása, melyet Kolmogorov,
Lévy, Hincsin, Feller, Gnedenko és Doeblin az 1930-40 évtizedben teljesen
megoldottak. Lévy legfontosabb eredményeit e területeten egy 1935-ben irt
cikke tartalmazza, mely - többek között - a stabilis es szemistabilis
eloszlások konstrukcióját, valamint a normális eloszlás vonzási es részleges
vonzási tartományának teljes leirását adja. Előadásunkban e cikk néhány
megjegyzésével foglalkozunk, melyek az utókor figyelmét elkerülték, és
melyek olyan eredményeket tartalmaznak, mint erős invariancia-elv,
Szkorohod reprezentáció, kvantilis transzformáció, stabilis eloszlások
sorfejtése, valamint a szentpétervári paradoxonban fellépő határeloszlás,
eredmények, melyek évtizedekkel előzik meg korukat, és számos ma is új
információt szolgáltatnak.
2017.05.18 Thursday, 16:15
Jeff Steif (Chalmers University, Göteborg)
Random walks on dynamical percolationAbstractWe study the behavior of random walk on dynamical percolation. In this
model, the edges of a graph G are either open or closed and refresh their
status at rate mu, while at the same time a random walker moves on G at rate
1, but only along edges which are open. On the d-dimensional torus with side
length n, when the bond parameter is subcritical, we determined (with Y.
Peres and A. Stauffer) the mixing times for both the full system and the
random walker. The supercritical case is harder, but using evolving sets
we were able (with Y. Peres and P. Sousi) to analyze it.
2017.05.11 Thursday, 16:15
Patrik Ferrari (Bonn)
On the limiting distributions for KPZ growth with random initial conditionAbstractFor stationary KPZ growth in 1+1 dimensions the height fluctuations are
governed by the Baik-Rains distribution. Using the totally asymmetric single
step growth model, alias TASEP, we investigate height fluctuations for a
general class of spatially homogeneous random initial conditions. We prove
that for TASEP there is a one-parameter family of limit distributions,
labeled by the roughness of the initial conditions. The distributions are
defined through a variational formula.
2017.03.23 Thursday, 16:15
Ráth Balázs (BME)
Rigid representations of the component structure of dynamic random graph modelsAbstractWe introduce the multiplicative coalescent with linear deletion, a
continuous-time Markov process describing the evolution of a collection of
blocks. This process arises in connection with random graph models which
exhibit self-organised criticality. We focus on results describing states
of the process in terms of collections of excursion lengths of random
functions, in which the coalescence of blocks is related to a "tilt" of the
random function and deletion of blocks is related to a "shift" of the random
function. Joint work with James Martin.
2017.03.16 Thursday, 16:15
Vadim Kaloshin (U. Maryland and ETH Zürich)
Stochastic Arnold Diffusion of Deterministic SystemsAbstractIn 1964, V. Arnold constructed an example of a nearly integrable
deterministic system exhibiting instabilities. In the 1970s, physicist B.
Chirikov coined the term for this phenomenon "Arnold diffusion", where
diffusion refers to stochastic nature of instability. One of the most famous
examples of stochastic instabilities for nearly integrable systems is
dynamics of Asteroids in Kirkwood gaps in the Asteroid belt. They were
discovered numerically by astronomer J. Wisdom.
During the talk we describe a class of nearly integrable deterministic
systems, where we prove stochastic diffusive behavior. Namely, we show that
distributions given by deterministic evolution of certain random initial
conditions weakly converge to a diffusion process. This result is
conceptually different from known mathematical results, where existence of
"diffusing orbits" is shown. This work is based on joint papers with O.
Castejon, M. Guardia, J. Zhang, and K. Zhang.
2017.03.02 Thursday, 16:15