Probability 1 CEU Budapest, fall semester 2017

Imre Péter Tóth

Homework sheet 1 – due on 03.10.2017

1. Define a σ -algebra as follows:

Definition 1 For a nonempty set Ω , a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega} := \{A : A \subset \Omega\}$ is the power set of Ω) is called a σ -algebra over Ω if

- $\bullet \ \emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^C := \Omega \setminus A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_1, A_2, \dots \in \mathcal{F}$, then $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ -algebra is closed under countable intersection, and under finite union and intersection.

2. Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

- i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_1, A_2, \ldots is an increasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \subset A_{i+1}$ for all i), then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_1, A_2, \ldots is a decreasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \supset A_{i+1}$ for all i) and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- (b) Show that in the second statement the condition $\mu(A_1) < \infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.

3. (homework)

(a) We toss a biased coin, on which the probability of heads is some $0 \le p \le 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$\xi := \begin{cases} 0, & \text{if tails} \\ 1, & \text{if heads} \end{cases}.$$

- i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
- ii. and also by describing the distribution as a measure on \mathbb{R} , giving the weight $\mathbb{P}(\xi \in B)$ of every (Borel) subset B of \mathbb{R} .
- iii. Calculate the expectation of ξ .
- (b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
 - i. Describe the distribution of X (called the Binomial distribution with parameters (n, p)) by listing possible values and their probabilities.
 - ii. Calculate the expectation of X by the old "probability 1" definition, using its distribution,
 - iii. and also by noticing that $X = \xi_1 + \xi_2 + \cdots + \xi_n$, where ξ_i is the indicator of the *i*-th toss being heads, and using linearity of the expectation.

- 4. (homework) Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops i.e. the number of floors that were chosen by at least one person. Calculate the expectation of X. (Hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation without that. Help: What is the probability that the elevator stops on the first floor?)
- 5. (homework) We take a huge bag. 1 minute before midnight we put 10 balls (numbered 1...10) into the bag. Then we draw a ball from the bag at random, and throw it away. $\frac{1}{2}$ minute before midnight we put another 10 balls (numbered 11...20) into the bag. Then we draw a ball from the bag at random, and throw it away. $\frac{1}{4}$ minute before midnight we put another 10 balls (numbered 21...30) into the bag. Then we draw a ball from the bag at random, and throw it away. And so on, infinitely many times: $\frac{1}{2^n}$ minute before midnight we put 10 balls (numbered (10n+1)...(10n+10)) into the bag. Then we draw a ball from the bag at random, and throw it away.
 - a.) What is the probability that ball number 1 will be in the bag at midnight? (Hint: we will see later that $\lim_{N\to\infty}\prod_{n=0}^N\left(1-\frac{1}{9n+10}\right)=0$.)
 - b.) What is the probability that ball number 11 will be in the bag at midnight?
 - c.) Show that, at midnight, with probability 1, the bag will be empty. (What?!?!)