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CEU Budapest, fall semester 2016

Imre Péter Tóth
Homework sheet 8 – due on 06.12.2013 – and exercises for practice

8.1 (homework) As in Exercise 6.5, let Sn be a simple asymmeric random walk starting from

S0 = 0, and let τ be the hitting time for the set H ⊂ N. You have seen that Mn :=
(

q

p

)Sn

is a

martingale and τ is a stopping time.

Now assume that p > 1

2
and H = {a, b} where a, b ∈ N. Let pa = P(Sτ = a) and pb = P(Sτ = b).

What does the optional stopping theorem say about pa and pb,

(a) when a = −5 and b = 7?

(b) when a = 5 and b = 7?

8.2 Let a, b ∈ N with a < 0 < b. Let Sn be a simple symmetric random walk with S0 = 0 and let τ
be the first hitting time for {a, b}. Apply the optional stopping theorem to the martingale Sn

to find the hitting probabilities pa = P(Sτ = a) and pb = P(Sτ = b).

8.3 Let a, b ∈ N with a < 0 < b. Let Sn be a simple asymmetric random walk with p :=
P(jump to the right) 6= 1

2
and S0 = 0. Let τ be the first hitting time for {a, b}. Apply the

optional stopping theorem to the martingale Sn − n(p− q) and the result of Exercise 1 to find
Eτ .

8.4 Let a, b ∈ N with a < 0 < b. Let Sn be a simple symmetric random walk with S0 = 0. Let τ be
the first hitting time for {a, b}. Apply the optional stopping theorem to the martingale S2

n − n

and the result of Exercise 2 to find Eτ .

8.5 Life, the Universe, and Everything. Arthur decides to keep rolling a fair die until he manages
to roll two 6-es consecutively. What is the expected number of rolls he needs?

8.6 (homework) Bob keeps tossing a fair coin and makes notes of the results: he writes “H” for
heads and “T” for tails. Calculate the expected number of tosses

a.) until the charater sequence “HTHT” shows up,

b.) until the charater sequence “THTT” shows up.

8.7 Alice and Bob keep tossing a fair coin until either the word A:=“HTHT” or the wordB:=“THTT”
shows up. If the word appearing first is A, then Alice wins, and if B, then Bob. Introduce the
notation pA := P(Alice wins), pB := P(Bob wins). Let τ be the random time when the game
ends.

a.) Think of a casino, as in the solution of the ABRACADABRA problem [2], where all players
bet for (consecutive letters of) the word A. Using the capital of this casino as a martingale,
express Eτ using pA and pB.

b.) Now think of another casino, where all players bet for (consecutive letters of) the word B.
Using the capital of this other casino as a martingale, get another expression for Eτ using
pA and pB.

c.) Solve the system of equations formed by the two equations above, to calculate Eτ , pA and
pB.
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8.8 A monkey keeps pressing keys of a typewriter with 26 keys printing the letters of the English
alphabet, uniformly and independently of the past, until the word “ABRACADABRA” shows
up. Denote this random time by τ . Beside the monkey – as in the original ABRACADABRA
solution [2]– operates a casino where players can always bet for the next key pressed in a fair
game: if their guess is wrong, they lose their bet entirely, while if it is correct, they lose it and
get back 26 times more.

Before every keypress, a new player arrives, who will bet all his money first on “A”, then on
“B”, then on “R”, etc. through the ABRACADABRA sequence, as long as he keeps winning
or the game ends. (If he loses once, he goes home immediately.) This is just like in the original
ABRACADABRA solution.

However, the later a player arrives, the less money he has to play with: there is some fixed
z ∈ (0, 1) such that the n-th player arrives with $zn−1.

Show that the fortune of the casino is a martingale, and use the optional stopping theorem to
calculate the generating function of τ .

8.9 Let N,X1, X2, X3, . . . be independent, and let them all have (optimistic) geometric ditribution
with parameter p = 1

6
. Calculate the expectation of

S =:

N
∑

k=1

(Xk + 1).

What has this got to do with Exercise 5?

Hint: use the generating function method, or simply apply the theorem we had about sums with
random number of terms.

8.10 (homework) Durrett [1], Exercise 8.1.3

8.11 Durrett [1], Exercise 8.2.3

8.12 (bonus for those who are interested) It is not hard to show that if ξ is a standard Gaussian
random variable and x ≥ 1, then

P(|X| ≥ x) ≤

√

2

π
e−

x
2

2 .

Use this to show that if ξ1, ξ2, . . . are i.i.d. standard Gaussian, then, with probability 1, the
event {|ξn| > 2 lnn} occurs for at most finitely many n-s.

8.13 (bonus for those who are interested) Paul Lévy construction of the Wiener process. In a possible
construction of the Wiener process (or Brownian motion) on [0, 1] we define a sequence of
piecewise linear continuous random functions so that we first define fn at dyadic rationals that
are multiples of 1

2n
, inheriting every second value (at multiples of 1

2n−1 ) form fn−1, and setting
the values at the remaining points (of the form 2k−1

2n
) to be the average of the two neighbouring

values, plus an independent Gaussian random value with mean 0 and variance 1

4n
. Then we

extend fn to [0, 1] piecewise linearly.

Formally: we take independent standard Gaussian random variables ξ0 and ξn,k where n =
1, 2, . . . and k = 1, 2, . . . , 2n−1. Then

• In the 0th step we fix f0(0) = 0 and f0(1) = ξ0. We connect these two values linearly.

• In the 1st step we leave f1(0) = f0(0) and f1(1) = f0(1), but also set f1(
1

2
) = f0(

1

2
)+ 1

2
ξ1,1.

We connect these three values linearly.
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• . . . in the nth step we leave fn
(

k
2n−1

)

= fn−1

(

( k
2n−1

)

for k = 0, 1, . . . , 2n−1, but also set

fn

(

k− 1

2

2n−1

)

= fn−1

(

k− 1

2

2n−1

)

+ 1

2n
ξn,k for k = 1, . . . , 2n−1. We connect these 2n + 1 values

linearly.

Notice that, in this construction, the difference gn := fn+1 − fn is the sum of 2n “tent” maps
with disjoint supports and i.i.d. Gaussian “heights”.

(a) Use the statement of Exercise 12 to show that, with probability 1, the series

lim
n→∞

fn = f0 +

∞
∑

n=0

gn

is uniformly absolutely convergent.

(b) Check that the limit is a Wiener process.
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