
Probability 1
CEU Budapest, fall semester 2016

Imre Péter Tóth
Homework sheet 3 – solutions

3.1 Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R and
gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do there exist
integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) → f(x) and gn(x) → g(x)

for Lebesgue almost every x ∈ [0, 1]? What is lim
n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are

the conditions of the dominated and monotone convergence theorems and the Fatou lemma
satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in a
unique way for every n). Now let

gn(x) =

{

1 if l
2k

≤ x < l+1

2k
,

0 otherwise.

3.2 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?

3.3 (homework) For real numbers a1, a2, a3, . . . define the infinite product
∞
∏

k=1

ak as

∞
∏

k=1

ak := lim
n→∞

n
∏

k=1

ak,

whenever this limit exists.

Let p1, p2, p3, . . . satisfy 0 ≤ pk < 1 for all k. Show that
∞
∏

k=1

(1−pk) > 0 if and only if
∞
∑

k=1

pk < ∞.

(Hint: estimate the logarithm of (1− p) with p.)

Solution: For 0 ≤ pk � 1 we have that
∞
∏

k=1

(1− pk) > 0 if and only if

lim
n→∞

n
∑

k=1

ln(1− pk) > −∞. (1)
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Now if pk 9 0, then this is clearly false. If pk → 0, then we get from the linear approximation
of x 7→ ln(1 + x) near x0 = 0 that – except possibly for finitely many k-s –

−pk ≥ ln(1− pk) ≥ −2pk.

This implies that

C −

n
∑

k=1

pk ≥

n
∑

k=1

ln(1− pk) ≥ C − 2

n
∑

k=1

pk,

which means that (1) holds if and only if limn→∞

∑n
k=1

pk < ∞.

3.4 Let X1, X2, . . . be independent random variables such that

P(Xn = n2 − 1) =
1

n2
, P(Xn = −1) = 1−

1

n2
.

Show that EXn = 0 for every n, but

lim
n→∞

X1 + . . .Xn

n
= −1

almost surely.

3.5 Let X1, X2, . . . , Xn be i.i.d. random variables. Prove that the following two statements are
equivalent:

(i) E|Xi| < ∞.

(ii) P(|Xn| > n for infinitely many n-s) = 0.

3.6 (homework) Prove that for any sequence X1, X2, . . . of random variables (real valued, defined
on the same probability space) there exists a sequence c1, c2, . . . of numbers such that

Xn

cn
→ 0 almost surely.

Solution: let an be so big that P(|Xn| > an) ≤
1

n2 , and let cn = nan. Then by the first Borel-
Cantelli lemma, almost surely |Xn| ≤ an for all but finitely many values of n, so

∣

∣

Xn

n

∣

∣ ≤ 1

n
for

all but finitely many values of n. This implies

P

(

Xn

cn
→ 0

)

= 1.

3.7 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space.
Prove that the following two statements are equivalent:

(i) Xn → X in probability as n → ∞.

(ii) From every subsequence {nk}
∞
k=1

a sub-subsequence {nkj}
∞
j=1 can be chosen such that

Xnkj
→ X almost surely as j → ∞.

3.8 (homework) Let X1, X2, . . . be independent such that Xn has Bernoulli(pn) distribution.
Determine what property the sequence pn has to satisfy so that

(a) Xn → X in probability as n → ∞
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(b) Xn → X almost surely as n → ∞.

Solution: First, let’s see what the possible limits can be. If Xn converges either strongly or in
probability, then it also has to converge weakly, so pn also has to converge to some p ∈ [0, 1],
and X ∼ B(p). Now if p = limn→∞ pn /∈ {0, 1}, then the sequence of independent Xn has no
chance to converge to X in probability, since P(|Xn − Xn+1| = 1) 6→ 0 (that is, the sequence
Xn makes big jumps often).

So we need either pn → 0 and Xn ≡ 0, or pn → 1 and Xn ≡ 1.

I. Let’s see Xn → 0 first.

a.) Xn → 0 in probability iff ∀ε > 0 we have P(|Xn| < ε) → 0. but Xn ∈ {0, 1}, so for
0 < ε < 1, {|Xn| > ε} = {Xn = 1}, so

Xn → 0 in probability ⇔ P(Xn = 1) → 0 ⇔ pn → 0.

b.) Since Xn ∈ {0, 1}, Xn → 0 almost surely iff Xn = 0 for all but finitley many n-s,
almost surely. By independence and the Borel-Cantelli lemmas, this happens iff

∞
∑

n=0

P(Xn 6= 0) =
∞
∑

n=0

pn < ∞.

II. Similarly for Xn → 0

a.) Xn → 1 in probability iff P(Xn 6= 1) → 0 iff 1− pn → 0 iff pn → 1.

b.) Xn → 1 almost surely iff
∑

n P(Xn 6= 1) < ∞ iff
∑

n(1− pn) < ∞.

3.9 Let X1, X2, . . . be independent random variables. Show that P(supnXn < ∞) = 1 if and only
if there is some A ∈ R for which

∑∞

n=1
P(Xn > A) < ∞.

3.10 Let X1, X2, . . . be independent exponentially distributed random variables such that Xn has
parameter λn. Let Sn :=

∑n
i=1

Xi. Show that if
∑∞

n=1

1

λn
= ∞, then Sn → ∞ almost surely,

but if
∑∞

n=1

1

λn
< ∞, then Sn → S almost surely, where S is some random variable which is

almost surely finite.

3.11 Let X1, X2, . . . be i.i.d. random variables with distribution Bernoulli(p) for some p ∈ (0; 1) but
p 6= 1

2
. Let Y :=

∑∞

n=1
2−nXn. (The sum is absolutely convergent.) Show that the distribution

of Y is continuous, but singular w.r.t. Lebesgue measure.

3.12 (homework) Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same
probability space and suppose that Xn → X in probability as n → ∞.

(a) If f : R → R is a continuous function, Yn = f(Xn) and Y = f(X), show that Yn → Y in
probability as n → ∞.

Solution: We nned to see that for any δ > 0 and ε > 0 if n is big enough, then P(|Yn−Y | >
δ) < ε. since Yn = f(Xn) and Y = f(X) where f is continuous, if |Yn− Y | can only be big
when wXn −X| is also big.

More precisely, if f is uniformly continuous, so that for any δ > 0 there is a δ′ > 0 such
that |f(x)− f(x0)| ≤ δ whenever |x− x0| ≤ δ′, then

P(|Yn − Y | > δ) ≤ P(|Xx −X| > δ′) < ε if n is big enough.
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since Xn → X in probability.

Unfortunately, a continuous f : R → R is in general not uniformly continuous. To treat
this problem, for any ε > 0 choose K so big that P(|X| > K) < ε

2
. Now the interval

I := [−K − 1, K + 1] is compact, so f is uniformly continuous on I: for any δ > 0 there is
a δ′ > 0 such that |f(x)− f(x0)| ≤ δ whenever |x− x0| ≤ δ′ and x0, x ∈ I. We can safely
assume that δ′ < 1.

Now if |Yn−Y | = |f(Xn)− f(X)| > δ, then either |Xn−X| > δ′, or |X| > K. This means
that

P(|Yn − Y | > δ) ≤ P(|Xn −X| > δ′) + P(|X| > K) ≤
ε

2
+

ε

2
= ε

if n is big enough.

(b) Show that if the Xn are almost surely uniformly bounded [that is: there exists a constant
M < ∞ such that P(∀n ∈ N |Xn| ≤ M) = 1], then limn→∞ EXn = EX .

Solution: Since Xn → X in probability, Xn ⇒ X weakly as well. The expectations are
EXn = Ef(Xn) and EX = Ef(X) where f : R → R is the identity function: f(x) = x.
If this f was bounded, then Xn ⇒ X would imply Ef(Xn) → Ef(X). Of course, f is not
bounded, but if all the Xn are a.s. bounded by M , then so is X , and f can “replaced” by
some bounded continuous fM , for which f = fM on [−M,M ]. E.g.

fM(x) :=











−M if x < −M

x if −M ≤ x ≤ M

M if x > M

will do. So EXn = EfM (Xn), EX = EfM(X), and Xn ⇒ X implies EfM (Xn) → EfM (X).

(c) Show, through an example, that for the previous statement, tha condition of boundedness
is needed.

Solution: Let P(Xn = n) = 1

n
and P(Xn = 0) = 1 − 1

n
. then Xn → 0 in probability, but

EXn = 1 for every n.

3.13 Let the random variables X1, X2, . . . , Y1, Y2, . . . , X and Y be defined on the same probability
space and assume that Xn → X and Yn → Y in probability. Show that

(a) XnYn → XY in probability.

(b) If almost surely Yn 6= 0 and Y 6= 0, then Xn/Yn → X/Y in probability.

3.14 (homework) Prove that

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

x2
1 + x2

2 + . . . x2
n

x1 + x2 + . . . xn
dx1 dx2 . . . dxn =

2

3
.

Solution: Let X1, X2, . . . be i.i.d. ∼ Uni([0, 1]). Then the joint density of X1, . . . , Xn is

fn(x1, . . . , xn) =

{

1 if 0 ≤ x1, . . . , xn ≤ 1

0 if not
.
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So

en :=

∫

1

0

. . .

∫

1

0

x2
1 + x2

2 + · · ·+ x2
n

x1 + x2 + · · ·+ xn
dx1 . . . dxn =

=

∫

Rn

x2
1 + x2

2 + · · ·+ x2
n

x1 + x2 + · · ·+ xn

fn(x1, . . . , xn) dx1 . . . dxn =

= E
X2

1 +X2
2 + · · ·+X2

n

X1 +X2 + · · ·+Xn
= E

X2

1
+X2

2
+···+X2

n

n
X1+X2+···+Xn

n

.

Now the strong law of large numbers says that

X1 +X2 + · · ·+Xn

n
→ EX =

1

2
and

X2
1 +X2

2 + · · ·+X2
n

n
→ EX2 =

1

3

almost surely. this implies that

X2
1 +X2

2 + · · ·+X2
n

X1 +X2 + · · ·+Xn
→

1/3

1/2
=

2

3

almost surley, and thus also in probability. To get the convergence of the expectations, one way

is to check that
X2

1
+X2

2
+···+X2

n

X1+X2+···+Xn
is bounded. Indeed, 0 ≤ X2

i ≤ Xi ≤ 1, so 0 ≤
X2

1
+X2

2
+···+X2

n

X1+X2+···+Xn
≤ 1

and Homework 12 gives that en → E2

3
= 2

3
.

3.15 Let f : [0; 1] → R be a continuous function. Prove that

(a)

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

f

(

x1 + x2 + . . . xn

n

)

dx1 dx2 . . . dxn = f

(

1

2

)

.

(b)

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

f
(

(x1x2 . . . xn)
1/n

)

dx1 dx2 . . . dxn = f

(

1

e

)

.

3.16 Let the random variables X1, X2, . . . , Xn, . . . be defined on the same probability space and let
Yn := supm≥n |Xm|. Prove that the following two statements are equivalent:

(i) Xn → 0 almost surely as n → ∞.

(ii) Yn → 0 in probability as n → ∞.

3.17 Weak convergence and densities, again.

(a) Prove the following

Theorem 1. Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Suppose that fn(x)

n→∞
−→ f(x) for every x ∈ R. Then µn ⇒ µ (weakly).

(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively. Use
the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction, consider
G(x) := 1− F (x).

(b) Show examples of the following facts:

i. It can happen that the fn converge pointwise to some f , but the sequence µn is not
weakly convergent, because f is not a density.

5



ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.

iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.

3.18 (homework) Let X1, X2, . . . be independent and uniformly distributed on [0, 1]. Let Mn =
max{X1, . . . , Xn} and let Yn = n(1 − Mn). Find the weak limit of Yn. (Hint: Calculate the
distribution functions.)

Solution: Let FX be the common distribution function of the Xi:

FX(x) = P(Xi ≤ x) =











0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

.

Now Mn = max{X1, . . . , Xn}, so Mn ≤ x iff Xi ≤ x for all i. So the distribution function of
Mn is

FMn
(x) := P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) = P(X1 ≤ x) · · ·P(Xn ≤ x) =

= (FX(x))
n =











0 if x ≤ 0

xn if 0 < x < 1

1 if x ≥ 1

.

We have used the independence of the Xi. Now the distribution function of Yn is

Fn(y) := P(Yn ≤ y) = P(n(1−Mn) ≤ y) = P
(

Mn ≥ 1−
y

n

)

= 1− FMn

(

1−
y

n

)

=

=











0 if y ≤ 0

1−
(

1− y
n

)n
if 0 < y < n

1 if y ≥ n

.

Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and
Fn(y) → limn→∞ 1−

(

1− y
n

)n
= 1− e−y. All in all, we got that

lim
n→∞

Fn(y) = F (y) :=

{

0 if y ≤ 0

1− e−y if y > 0

for every y ∈ R, so Fn ⇒ F . This F is exactly the distribution function of the exponential
distribution with parameter 1, so we have shown that Yn ⇒ Exp(1).
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