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Probability 1
CEU Budapest, fall semester 2016
Imre Péter Toth
Homework sheet 3 — solutions

Ezchangeability of integral and limit. Consider the sequences of functions f, : [0,1] — R and

gn ¢ [0, 1] — R concerning their pointwise limits and the limits of their integrals. Do there exist

integrable functions f : [0,1] - R and g : [0,1] — R, such that f,(z) — f(x) and g,(x) — g(x)
1 1

for Lebesgue almost every = € [0,1]? What is lim ( i fn(x)dx) and lim ( [ gn(a:)daz)? Are

the conditions of the dominated and monotone convergence theorems and the Fatou lemma
satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

n’x if0<z<1/n,
folx)=<2n—n%x ifl/n<x<2/n,
0 otherwise.

(b) Write n as n = 2F + 1, where k = 0,1,2... and [ = 0,1,...,2% — 1 (this can be done in a
unique way for every n). Now let

1 if & <z < B
gn(l’) = .
0 otherwise.

Exchangeability of integrals. Consider the following function f : R? — R:

1 if O<z,0<yand0<zx—y<l1,
flx)=<-1 if O0<z,0<yandO<y—ax<1,

0 otherwise.

400 / +00 +oo
Calculate [ <f f(x,y)d:c) dy and (

—00

+oo
S f(a:,y)dy) dx. What’s the situation with the

Fubini theorem?

o
(homework) For real numbers ay, as, as, ... define the infinite product [] ax as
k=1

o n

Hak = lim Hak,
n—o0

k=1 k=1

whenever this limit exists.

Let p1, p2, ps3, - . . satisfy 0 < p, < 1 for all k. Show that [[ (1—px) > 0if and only if > p < oco.
k=1 k=1

(Hint: estimate the logarithm of (1 — p) with p.)

Solution: For 0 < p; S 1 we have that [[ (1 — px) > 0 if and only if

k=1
lim Zln(l — pg) > —o0. (1)
n—o0
k=1
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Now if pr - 0, then this is clearly false. If p — 0, then we get from the linear approximation
of z +— In(1 + x) near zg = 0 that — except possibly for finitely many k-s —

—pr. > In(1 — px) > —2py.
This implies that

C=Y pe>Y In(l—p)>C=2> ps
h=1 i s

which means that (1) holds if and only if lim, 0 Y, Pr < 00.

Let X, X5, ... be independent random variables such that
9 1 1
Show that EX,, = 0 for every n, but
Xi+...X,
lim 22 =1
n—o00 n
almost surely.
Let X1, X,,..., X, be ii.d. random variables. Prove that the following two statements are
equivalent:
(i) E|X;| < 0.
(ii) P(|X,| > n for infinitely many n-s) = 0.
(homework) Prove that for any sequence X, Xy, ... of random variables (real valued, defined
on the same probability space) there exists a sequence ¢, ¢g, ... of numbers such that

— — 0 almost surely.
Cn

Solution: let a, be so big that P(|X,| > a,) < #, and let ¢, = na,. Then by the first Borel-
Cantelli lemma, almost surely | X,| < a,, for all but finitely many values of n, so ‘%‘ < % for
all but finitely many values of n. This implies

X,
IP’(— —>O) =1.
Cn

Let the random variables X, X5,..., X,,,... and X be defined on the same probability space.
Prove that the following two statements are equivalent:

(i) X,, = X in probability as n — oc.

(ii) From every subsequence {n;};, a sub-subsequence {ny;}32; can be chosen such that
Xy, — X almost surely as j — oo.
J

(homework) Let Xj, Xs,... be independent such that X, has Bernoulli(p,) distribution.
Determine what property the sequence p, has to satisfy so that

(a) X, — X in probability as n — oo
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(b) X,, — X almost surely as n — co.

Solution: First, let’s see what the possible limits can be. If X, converges either strongly or in
probability, then it also has to converge weakly, so p, also has to converge to some p € [0, 1],
and X ~ B(p). Now if p = lim,, o p, ¢ {0,1}, then the sequence of independent X, has no
chance to converge to X in probability, since P(|X,, — X,;+1| = 1) /4 0 (that is, the sequence
X, makes big jumps often).

So we need either p, — 0 and X,, =0, or p, — 1 and X,, = 1.

I. Let’s see X,, — 0 first.

a.) X, — 0 in probability iff Ve > 0 we have P(|X,,| < e) — 0. but X,, € {0,1}, so for
0<e<1,{|X,| >e}={X,=1}, 50

X, — 0 in probability < P(X,, =1) - 0< p, — 0.

b.) Since X,, € {0,1}, X,, — 0 almost surely iff X,, = 0 for all but finitley many n-s,
almost surely. By independence and the Borel-Cantelli lemmas, this happens iff

Y P(X, #£0) =) pa < oo
n=0 n=0

IT. Similarly for X,, — 0
a.) X, — 1 in probability iff P(X,, # 1) = 0iff 1 —p, — 0iff p, — 1.
b.) X,, — 1 almost surely iff ) P(X, # 1) <ooiff > (1 —p,) < oco.

Let X1, Xs,... be independent random variables. Show that P(sup,, X,, < co) =1 if and only
if there is some A € R for which > 7 P(X,, > A) < co.

Let X1, X5,... be independent exponentially distributed random variables such that X,, has
parameter \,. Let S, := Z’;:l X;. Show that if Ezozl ﬁ = o0, then S,, — oo almost surely,
but if Y>>, i < 00, then §,, — S almost surely, where S is some random variable which is
almost surely finite.

Let X1, Xs,... beii.d. random variables with distribution Bernoulli(p) for some p € (0;1) but
pF# % Let Y :=3 > 27"X,. (The sum is absolutely convergent.) Show that the distribution
of Y is continuous, but singular w.r.t. Lebesgue measure.

(homework) Let the random variables X;, Xs,...,X,,,... and X be defined on the same
probability space and suppose that X,, — X in probability as n — oo.

(a) If f: R — R is a continuous function, Y,, = f(X,) and Y = f(X), show that ¥,, = Y in
probability as n — oo.

Solution: We nned to see that for any 6 > 0 and ¢ > 0 if n is big enough, then P(|Y,,—Y| >
J) < e.since Y, = f(X,) and Y = f(X) where f is continuous, if |Y,, — Y| can only be big
when wX,, — X| is also big.

More precisely, if f is uniformly continuous, so that for any § > 0 there is a ¢’ > 0 such
that | f(z) — f(xo)| < & whenever |z — xo| < ¢, then

P(|Y, = Y| > ) <P(|X, — X| > ) < eif nis big enough.



since X,, = X in probability.
Unfortunately, a continuous f : R — R is in general not uniformly continuous. To treat

this problem, for any ¢ > 0 choose K so big that P(|X| > K) < 5. Now the interval

I:=]-K —1,K + 1] is compact, so f is uniformly continuous on I: for any ¢ > 0 there is
a ¢’ > 0 such that |f(z) — f(x¢)| < d whenever |z — xo| < ¢ and xg,z € I. We can safely
assume that ¢ < 1.

Now if |Y,, = Y| = | f(X,) — f(X)| > 9, then either | X, — X| > ¢, or | X| > K. This means
that
B(|Y, — Y| > 8) < B(X, — X| > &) + B(X| > K) <
if n is big enough. O
(b) Show that if the X,, are almost surely uniformly bounded [that is: there exists a constant
M < oo such that P(Vn € N|X,| < M) = 1], then lim,_,,, EX,, = EX.

Solution: Since X,, — X in probability, X,, = X weakly as well. The expectations are
EX, = Ef(X,) and EX = Ef(X) where f : R — R is the identity function: f(x) = =.
If this f was bounded, then X,, = X would imply Ef(X,) — Ef(X). Of course, f is not
bounded, but if all the X, are a.s. bounded by M, then so is X, and f can “replaced” by
some bounded continuous fy, for which f = fy; on [-M, M]. E.g.

-M itrx<-M
fu(z) =<z if —M<x<M
M ifx>M
will do. So EX,, = Efy(X,,), EX = Efy(X), and X,, = X implies Efy (X)) = Efa(X).

(c¢) Show, through an example, that for the previous statement, tha condition of boundedness
is needed.

Solution: Let P(X,, = n) = + and P(X,, = 0) =1 — X. then X, — 0 in probability, but
EX, =1 for every n.

3.13 Let the random variables X7, Xs,..., Y1,Y5,..., X and Y be defined on the same probability
space and assume that X,, — X and Y,, — Y in probability. Show that

(a) X,Y, — XY in probability.
(b) If almost surely Y, # 0 and Y # 0, then X,,/Y,, — X/Y in probability.

3.14 (homework) Prove that

2
. 2
lim / / / ik s ”3" d:cl day ... dx, = =.
n—00 x|+ o + . 3

Solution: Let X;, Xs,... be iid. ~ Uni([0,1]). Then the joint density of Xi,..., X, is

1 ifo<z,...,z, <1
fn<x1,...,a:n>={ - .

0 if not



So

2+ ad e a?
/ / ! 2+ dxy ... dx, =
1+ ZTo+ -+ Ty
¢+ x2
= / ittt 2 fo(xy, .o x,)dey .. day, =
Rn L1+ Xo 4+ Ty

24 X244 X2
_ EX%+X§+...+X2_EW
N X+ Xo+ -+ X,  XitXobd Xy

n

Now the strong law of large numbers says that

X+ Xy -+ X, 1 X2 4 X24 ... 4+ X2
LAzt —>IE:,X:5 and SLTAYTF AL pas L
n n

almost surely. this implies that

X%+X§+-~-+X§_}ﬁ_2

X+ X4+ X, 1/2 3

almost surley, and thus also in probability. To get the convergence of the expectatlons one way

2
is to check that % is bounded. Indeed, 0 < X2 <X;<1,500< ))((11?—112 <1
O

and Homework 12 gives that e,, — E§ = 5.

3.15 Let f :[0;1] — R be a continuous function. Prove that

(a)
T}i_)ngo// / (“““”ﬁ )dxldxz...dxn:fe).
,}L”;o/;/ol“'/olf((‘”lx?' W)Y day das . dxn:fG).

3.16 Let the random variables X7, X5, ..., X,,,... be defined on the same probability space and let
Y, := sup,,>, | Xim|. Prove that the following two statements are equivalent:

(b)

(i) X,, — 0 almost surely as n — 0.
(ii) Y, — 0 in probability as n — oc.

3.17 Weak convergence and densities, again.

(a) Prove the following

Theorem 1. Let iy, pio, ... and p be a sequence of probability distributions on R which are
absolutely continuous w.r.t. Lebesque measure. Denote their densities by f1, fa,... and f,
n—oo

respectively. Suppose that f,(x) — f(z) for every x € R. Then pu, = p (weakly).

(Hint: denote the cumulative distribution functions by Fy, Fy, ... and F, respectively. Use
the Fatou lemma to show that F'(x) < liminf,, . F,(z). For the other direction, consider

G(z) :=1— F(x).
(b) Show examples of the following facts:

i. It can happen that the f,, converge pointwise to some f, but the sequence pu,, is not
weakly convergent, because f is not a density.

b}



ii. It can happen that the pu, are absolutely continuous, u, = w, but u is not absolutely
continuous.

iii. It can happen that the u, and also p are absolutely continuous, p, = p, but f,(x)
does not converge to f(z) for any x.

3.18 (homework) Let X, X5,... be independent and uniformly distributed on [0,1]. Let M, =
max{Xy,..., X, } and let Y,, = n(l — M,,). Find the weak limit of Y,. (Hint: Calculate the
distribution functions.)

Solution: Let F'x be the common distribution function of the X;:

0 fz<0
Fx(z)=P(X;<z)=qx if0<z<l1.
1 ifx>1

Now M, = max{Xy,..., X, }, so M, <z iff X; < z for all i. So the distribution function of

M, is
Fy,(z) = PM, <2)=PX;<z,....X, <2)=PX; <z)---PX, <x)=
ifx<0
= (Fx(z)"=¢2" if0<z<l1.
1 ifx>1

We have used the independence of the X;. Now the distribution function of Y,, is

Fuy) = Mnngpm@—mgngp@@21—%:ﬂ—ﬂmﬁ_%>:

n
0 ify <0
= 1-(1-Y" ifo<y<n.
1 ify>n

Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and
F.(y) = lim, o 1 — (1 — %)n =1—e¢e¥ Allin all, we got that

0 ify <0

l—e? ify>0

n—oo

muwwzmw:{

for every y € R, so F,, = F. This F is exactly the distribution function of the exponential
distribution with parameter 1, so we have shown that Y,, = Exp(1).



