
Probability 1
CEU Budapest, fall semester 2017

Imre Péter Tóth
Homework sheet 4 – solutions

4.1 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space
and suppose that Xn → X in probability as n→ ∞.

(a) If f : R → R is a continuous function, Yn = f(Xn) and Y = f(X), show that Yn → Y in
probability as n→ ∞.

(b) Show that if the Xn are almost surely uniformly bounded [that is: there exists a constant
M <∞ such that P(∀n ∈ N |Xn| ≤M) = 1], then limn→∞ EXn = EX .

(c) Show, through an example, that for the previous statement, the condition of boundedness
is needed.

4.2 Let the random variables X1, X2, . . . , Y1, Y2, . . . , X and Y be defined on the same probability
space and assume that Xn → X and Yn → Y in probability. Show that

(a) XnYn → XY in probability.

(b) If almost surely Yn 6= 0 and Y 6= 0, then Xn/Yn → X/Y in probability.

4.3 Prove that

lim
n→∞

∫ 1

0

∫ 1

0

. . .

∫ 1

0

x21 + x22 + . . . x2n
x1 + x2 + . . . xn

dx1 dx2 . . . dxn =
2

3
.

4.4 (homework) Let f : [0; 1] → R be a continuous function. Prove that

(a)

lim
n→∞

∫ 1

0

∫ 1

0

. . .

∫ 1

0

f

(

x1 + x2 + . . . xn
n

)

dx1 dx2 . . . dxn = f

(

1

2

)

.

(b)

lim
n→∞

∫ 1

0

∫ 1

0

. . .

∫ 1

0

f
(

(x1x2 . . . xn)
1/n

)

dx1 dx2 . . . dxn = f

(

1

e

)

.

(Hint: interprete these integrals as expectations.)

Solution:

(a) The integral (without the limit) is exactly Ef
(

X1+X2+...Xn

n

)

, where the Xi are independent
random variables, uniformly distributed on [0, 1]. (Indeed, the joint density of these is 1
on [0, 1]n, and 0 elsewhere.) The weak law of large numbers says that

X1 +X2 + . . .Xn

n
⇒ EX1 =

1

2
.

By (one of the) the definition(s) of weak convergence, this means exactly that

Ef

(

X1 +X2 + . . .Xn

n

)

→ f

(

1

2

)

when f : R → R is bounded and continuous. Now, in this exercise, f is only assumed to be
continuous, and defined only on [0, 1]. This is enough, because X1+X2+...Xn

n
∈ [0, 1] anyway,

and a continuous function on a closed interval is always bounded. (To strictly apply the
definition of weak convergence, you can extend f to R in any continuous way.)
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(b) The integral (without the limit) is exactly

In := Ef
(

(X1X2 . . .Xn)
1/n

)

= Ef

(

exp

(

logX1 + · · ·+ logXn

n

))

where the Xi are independent random variables, uniformly distributed on [0, 1]. (Indeed,
the joint density of these is 1 on [0, 1]n, and 0 elsewhere.) So, with the notation g(y) :=
f(exp(y)) and Yi := logXi,

In = Eg

(

Y1 + · · ·+ Yn
n

)

.

The weak law of large numbers says that

Y1 + · · ·+ Yn
n

⇒ EY1 =

∫ 1

0

log(x) dx = −1.

By (one of the) the definition(s) of weak convergence, this means exactly that

Eg

(

Y1 + · · ·+ Yn
n

)

→ g(−1) = f(exp(−1)) = f

(

1

e

)

if g : R → R is bounded and continuous. In our case g(y) := f(exp(y)) is continuous,
because f is continuous. Boundedness comes as before: f is only assumed to be continuous,
and defined only on [0, 1]. This is enough, because exp

(

Y1+···+Yn

n

)

∈ [0, 1] anyway, and a
continuous function on a closed interval is always bounded. (To strictly apply the definition
of weak convergence, you can extend f to R in any continuous way.)

4.5 Let the random variables X1, X2, . . . , Xn, . . . be defined on the same probability space and let
Yn := supm≥n |Xm|. Prove that the following two statements are equivalent:

(i) Xn → 0 almost surely as n→ ∞.

(ii) Yn → 0 in probability as n→ ∞.

4.6 Weak convergence and densities.

(a) Prove the following

Theorem 1 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Suppose that fn(x)

n→∞
−→ f(x) for every x ∈ R. Then µn ⇒ µ (weakly).

(Hint: denote the cumulative distribution functions by F1, F2, . . . and F , respectively. Use
the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction, consider
G(x) := 1− F (x).

(b) Show examples of the following facts:

i. It can happen that the fn converge pointwise to some f , but the sequence µn is not
weakly convergent, because f is not a density.

ii. It can happen that the µn are absolutely continuous, µn ⇒ µ, but µ is not absolutely
continuous.

iii. It can happen that the µn and also µ are absolutely continuous, µn ⇒ µ, but fn(x)
does not converge to f(x) for any x.
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4.7 Let X1, X2, . . . be independent and uniformly distributed on [0, 1]. LetMn = max{X1, . . . , Xn}
and let Yn = n(1−Mn). Find the weak limit of Yn. (Hint: Calculate the distribution functions.)

4.8 (homework) Let X1, X2, . . . be independent and exponentially distributed with parameter
λ = 1. Let Mn = max{X1, . . . , Xn} and let Yn =Mn − lnn. Find the weak limit of Yn. (Hint:
Calculate the distribution functions.)

Solution: The distribution function of each Xi is

FX(x) =

{

0 if x < 0

1− e−x if x ≥ 0
.

Using the independence of the Xi, The distribution function of Mn is

FMn
(x) = P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) = P(X1 ≤ x) . . .P(Xn ≤ x) = (FX(x))

n

=

{

0 if x < 0

(1− e−x)
n

if x ≥ 0
.

So, by the definition of Yn, the distribution function of Yn is

Fn(y) := FYn
(y) = P(Mn − lnn ≤ y) = P(Mn ≤ lnn+ y) = FMn

(lnn+ y) =

=

{

0 if lnn+ y < 0, meaning y < − lnn
(

1− e−(lnn+y)
)n

=
(

1− e−y

n

)n

if y ≥ − lnn
.

To find the weak limit, we need to calculate limn→∞ Fn(y) for each fixed y ∈ R. Since y is
fixed and n grows, we will have y ≥ − lnn for n large enough, and we only need to look at the
second line of the case separation:

lim
n→∞

Fn(y) = lim
n→∞

(

1−
e−y

n

)n

= exp(−e−y).

(We used that
(

1 + c
n

)n
→ exp(c) for every c ∈ R, including c = −e−y.)

So we got that Yn ⇒ Y where Y has distribution function F (y) := exp(−e−y) = e−e−y

. One
can see that this is indeed a distribution function, by checking the monotonicity and the limits
at ±∞. The distribution of Y is called the Gumbel distribution.

4.9 Poisson approximation of the binomial distribution. Fix 0 < λ ∈ R. Show that if Xn has
binomial distribution with parameters (n, p) such that np → λ as n → ∞, then Xn converges
to Poi(λ) weakly.

4.10 (homework) Continuous limit of the geometric distribution. Let Xn be geometrically dis-
tributed with parameter pn = 1

n
and let Yn = 1

n
Xn. (So EYn = 1.) Find the weak limit of

Yn. (Hint: you can use the method of characteristic functions, but you can also calculate the
limiting distribution function directly.)

Solution: Using characteristic functions. From an earlier homework, Xn has characteristic
function

ψXn
(t) = EeitXn =

pne
it

1− (1− pn)eit
=

1
n
eit

1− (1− 1
n
)eit

.
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So the characteristic function of Yn is

ψn(t) := ψYn
(t) = Eeit

Xn
n = Eei

t
n
Xn = ψXn

(

t

n

)

=
1
n
ei

t
n

1− (1− 1
n
)ei

t
n

=
ei

t
n

1 + n(1− ei
t
n )
.

To find the weak limit, we need the pointwise limit limn→∞ ψn(t) for each fixed t ∈ R. For fixed
t, the numerator ei

t
n just goes to 1, while in the denominator n(1− ei

t
n ) → −it. (This you can

see by using L’Hospital’s rule, or by writing the first order Taylor expansion ei
t
n = 1+i t

n
+o(i t

n
).)

So

lim
n→∞

ψn(t) =
1

1− it
.

So, by the continuity theorem, Yn ⇒ Y where Y has characteristic function ψ(t) := 1
1−it

. By
a previous homework, this is exactly the characteristic function of the exponential distribution
with parameter 1, so Yn ⇒ Exp(1).

4.11 Let X be uniformly distributed on [−1; 1], and set Yn = nX .

a.) Calculate the characteristic function ψn of Yn.

b.) Calculate the pointwise limit lim
n→∞

ψn(t), if it exists.

c.) Does (the distribution of) Yn have a weak limit?

d.) How come?

4.12 Show that if Ψ is the characteristic function of some random variable X , then the complex
conjugate Ψ̄ is also the characteristic function of some random variable Y . (Hint: try to find
out what Y is.)

4.13 Durrett [1], Exercise 3.3.1 (Hint: try to find the appropriate random variables. Use the previous
exercise.)

4.14 Durrett [1], Exercise 3.3.3

4.15 Durrett [1], Exercise 3.3.9

4.16 Durrett [1], Exercise 3.3.10. Show also that independence is needed.

4.17 Durrett [1], Exercise 3.3.11

4.18 LetX1, X2, . . . be i.i.d. random variables with density (w.r.t. Lebesgue measure) f(x) = 1
π

1
1+x2 .

(So they have the Cauchy distribution.) Find the weak limit (as n→ ∞) of the average

X1 + · · ·+Xn

n
.

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is
using characteristic functions. Calculating the characteristic function of the Cauchy distribution
is a little tricky, but you can look it up.
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