
Probability 1
CEU Budapest, fall semester 2017

Imre Péter Tóth
Homework sheet 5 – solutions

5.1 (homework) Consider the probability space Ω = {a, b, c} equipped with the uniform measure
as P (so P({a}) = P({b}) = P({c}) = 1

3
). Let the random variable X : Ω → R be such that

X(a) = X(b) = 0, X(c) = 1.

a.) Let D1 be the partition {{a}, {b, c}}. Find the conditional expectation E(X|D1) (which is
the same as E(X|G1), where the σ-algebra G1 is G1 = {∅, {a}, {b, c},Ω}.)

b.) Let D2 be the partition {{a, b}, {c}}. Find the conditional expectation E(X|D2) (which is
the same as E(X|G2), where the σ-algebra G2 is G2 = {∅, {a, b}, {c},Ω}.)

Solution: Let’s use the notation pa := P({a}), pb := P({b}), pc := P({c}), so in our case
pa = pb = pc =

1
3
.

a.) Let A1 = {a}, A2 = {b, c}, so the conditional expectation Y := E(X|D1) is a random
variable Y : Ω → R which is constant on A1 and A2. On the event A1 the value is the old
style conditional expectation Y|A1

= E(X|A1) =
paX(a)

pa
= 0. On the event A2 the value is

the old style conditional expectation Y|A2
= E(X|A2) = pbX(b)+pcX(c)

pb+pc
= 0+1

2
= 1

2
. So the

random variable we are looking for is

E(X|D1)(ω) = Y (ω) =

{

0, if ω = a
1
2
, if ω = b or ω = c.

b.) Let B1 = {a, b}, B2 = {c}, so the conditional expectation Z := E(X|D2) is a random
variable Z : Ω → R which is constant on B1 and B2. On the event B1 the value is the old
style conditional expectation Z|B1

= E(X|B1) = paX(a)+pbX(b)
pa+pb

= 0. On the event B2 the

value is the old style conditional expectation Z|B2
= E(X|B2) =

pcX(c)
pc

= 1. So the random
variable we are looking for is

E(X|D2)(ω) = Z(ω) =

{

0, if ω = a or ω = b

1, if ω = c.

Notice that E(X|D2) = X . This has to be the case, because X is already constant on B1

and B2, or equivalently, measurable w.r.t. the σ-algeba G2.

5.2 Durrett [1], Exercise 5.1.6

5.3 Durrett [1], Exercise 5.2.3

5.4 Durrett [1], Exercise 5.2.4

5.5 Let Xn be a martingale w.r.t. the filtration Fn on the probability space (Ω,F ,P) and let the
random variable τ : Ω → N be a stopping time, meaning

{τ = k} := {ω ∈ Ω | τ(ω) = k} ∈ Fk for every k.
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Using the notation a ∧ b := min{a, b}, we introduce the process

Yn := Xτ∧n =

{

Xn if n < τ,

Xτ if n ≥ τ .

Show that Yn is also a martingale w.r.t. Fn. (Hint: Yn is the fortune of a gambler with a
certain strategy.)

5.6 (homework) Let p ∈ (0, 1) be fixed, and let q = 1 − p. A frog performs a (discrete time)
random walk on the 1-dimensional lattice Z the following way:

The initial position is X0 = 0. The frog jumps 1 step up with probability p and jumps 1 step
down with probability q at each time step, independently of what happened before, until it
reaches either the point a = −10 or the point b = +30, which are sticky : if the frog reaches
one of them, it stays there forever.

Let Xn denote the position of the frog after n steps (for n = 0, 1, 2, . . . ).

a.) Show that Yn :=
(

q

p

)Xn

is a martingale (w.r.t. the natural filtration).

b.) Show that Yn converges almost surely to some limiting random variable Y∞. What are the
possible values of Y∞?

c.) How much is EY∞ and why?

d.) Suppose now that p 6= 1
2
. Use the previous results to calculate the probability that the frog

eventually gets stuck at the point a = −10.

Solution:

a.) Xn is bounded, so Yn is bounded, so integrability is no problem. Yn is also measurable w.r.t.
the natural filtration, by definition. So we only need to check the martingale property. First,
let k ∈ {−9,−8, . . . , 29}. Then the conditional distribution of Xn+1 under the condition
Xn = k is P(Xn+1 = k − 1|Xn = k) = q, P(Xn+1 = k + 1|Xn = k) = p. So

E

(

Yn+1

∣

∣

∣

∣

∣

Yn =

(

q

p

)k
)

= E(Yn+1|Xn = k) = q ·

(

q

p

)k−1

+ p ·

(

q

p

)k+1

=

=

(

q

p

)k (

q
p

q
+ p

q

p

)

=

(

q

p

)k

.

If Xn = k with k = −10 or k = 20, then the frog is stuck, so the conditional distribution
of Xn+1 under the condition Xn = k is P(Xn+1 = k) = 1. Then of course,

E

(

Yn+1

∣

∣

∣

∣

∣

Yn =

(

q

p

)k
)

= E(Yn+1|Xn = k) =

(

q

p

)k

.

In all cases we see that
E(Yn+1|Yn) = Yn,

so Yn is a martingale.
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b.) Let τ := inf{n |Xn ∈ {−10, 30}} be the random time when the frog gets stuck. Wherever
the frog is, it will get stuck within 40 steps with some positive probability, which is at least
p40 (the probability of performing 40 jumps to the right in a row). (This is a very rough
estimate, but it’s good enough.) So for every k = 1, 2, . . . we have P(τ > 40k) ≤ (1−p40)k,
which goes to zero as k → ∞, which proves that P(τ = ∞) = 0. so, with probability 1, the
frog gets stuck, so Yn remains eventually constant, and thus convergent.

(Remark: in a week we will have a more elegant proof using the martingale convergence
theorem.)

This also shows that Y∞ = Yτ ∈

{

(

q

p

)−10

,
(

q

p

)30
}

.

c.) We have just seen that Y∞ = Yτ . Now τ is an almost surely finite stopping time, Yn is a
bounded martingale, so the optional stopping theorem says that EYτ = EY0 = 1.

d.) Let A be the event that the frog eventually gets stuck at the point a = −10, and let B be
the event that the frog eventually gets stuck at the point b = 30. We saw that

P(A) + P(B) = 1. (1)

Also, Y∞ =
(

q

p

)−10

on the event A and Y∞ =
(

q

p

)30

on the event B. So the previous item

shows

EY∞ = P(A)

(

q

p

)−10

+ P(B)

(

q

p

)30

= 1. (2)

We can now get P(A) and P(B) by solving the linear system of equations ((1),(2)). The
result is

P(A) =

(

q

p

)30

− 1
(

q

p

)30

−
(

q

p

)−10 , P(B) =
1−

(

q

p

)−10

(

q

p

)30

−
(

q

p

)−10 .

The answer to the question is P (A).

5.7 Let 0 ≤ p ≤ 1 and q = 1−p. Let X1, X2, . . . be i.i.d. with P(Xi = −1) = q and P(Xi = 1) = p.
For n = 0, 1, . . . let Sn = X1 + · · ·+Xn. So Sn is a simple asymmetric random walk starting
from S0 = 0. (Symmetric if p = 1

2
.) Show that Mn := Sn − n(p− q) is a martingale (w.r.t. the

natural filtration).

For p 6= q, use this to find the expectation of the time when the frog of the previous exercise
gets stuck.

5.8 Let X1, X2, . . . be i.i.d. with P(Xi = −1) = P(Xi = 1) = 1
2
. For n = 0, 1, . . . let Sn =

X1 + · · ·+Xn. So Sn is a simple symmetric random walk starting from S0 = 0.

a.) Show that S2
n − n is a martingale (w.r.t. the natural filtration). This is a special case of

Durrett [1], Exercise 5.2.6. You can also solve that – it’ not any harder.

b.) Use this to find the expectation of the stopping time when the walk first reaches either −10
or 30.

c.) How about the expectation of the stopping time when the walk first reaches 30?

5.9 Let 0 ≤ p ≤ 1 and q = 1−p. Let X1, X2, . . . be i.i.d. with P(Xi = −1) = q and P(Xi = 1) = p.
For n = 0, 1, . . . let Sn = X1 + · · ·+Xn. So Sn is a simple asymmetric random walk starting
from S0 = 0. (Symmetric if p = 1

2
.)
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a.) Show that Mn :=
(

q

p

)Sn

is a martingale (w.r.t. the natural filtration).

b.) Let H ⊂ Z and let τ be the random time when the random walk first reaches H , so

τ = inf{n |Sn ∈ H}.

Show that Mτ∧n is also a martingale.

c.) Let p = 1
3
. What is the probability that the walk ever reaches 10?

5.10 Life, the Universe, and Everything. Arthur decides to keep rolling a fair die until he manages
to roll two 6-es consecutively. What is the expected number of rolls he needs?

5.11 (homework) Bob keeps tossing a fair coin and makes notes of the results: he writes “H” for
heads and “T” for tails. Calculate the expected number of tosses

a.) until the character sequence “HTHT” shows up,

b.) until the character sequence “THTT” shows up.

Solution: We know from the solution of the ABRACADABRA problem that

E(# of tosses) =
∑

{

(

1

p

)k
∣

∣

∣

∣

∣

the first k characters are the same as the last k characters

}

,

where p = 1
2
is the probability of each character showing up. So

a.) E(# of tosses) = 24 + 22 = 16 + 4 = 20.

b.) E(# of tosses) = 24 + 21 = 16 + 2 = 18.

5.12 Alice and Bob keep tossing a fair coin until either the word A:=“HTHT” or the wordB:=“THTT”
shows up. If the word appearing first is A, then Alice wins, and if B, then Bob. Introduce the
notation pA := P(Alice wins), pB := P(Bob wins). Let τ be the random time when the game
ends.

a.) Think of a casino, as in the solution of the ABRACADABRA problem [2], where all players
bet for (consecutive letters of) the word A. Using the capital of this casino as a martingale,
express Eτ using pA and pB.

b.) Now think of another casino, where all players bet for (consecutive letters of) the word B.
Using the capital of this other casino as a martingale, get another expression for Eτ using
pA and pB.

c.) Solve the system of equations formed by the two equations above, to calculate Eτ , pA and
pB.

5.13 Definition 1 The generating function of a non-negative, integer valued random variable X is
the power series z → gX(z) :=

∑∞
k=0 P(X = k)zk, which is convergent at least on the [−1, 1]

interval.

If we know gX , then the distribution of X can be reconstructed by Taylor expansion.

A monkey keeps pressing keys of a typewriter with 26 keys printing the letters of the English
alphabet, uniformly and independently of the past, until the word “ABRACADABRA” shows
up. Denote this random time by τ . Beside the monkey – as in the original ABRACADABRA
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solution [2] – operates a casino where players can always bet for the next key pressed in a fair
game: if their guess is wrong, they lose their bet entirely, while if it is correct, they lose it and
get back 26 times more.

Before every key press, a new player arrives, who will bet all his money first on “A”, then on
“B”, then on “R”, etc. through the ABRACADABRA sequence, as long as he keeps winning
or the game ends. (If he loses once, he goes home immediately.) This is just like in the original
ABRACADABRA solution.

However, the later a player arrives, the less money he has to play with: there is some fixed
z ∈ (0, 1) such that the n-th player arrives with $zn−1.

Show that the fortune of the casino is a martingale, and use the optional stopping theorem to
calculate the generating function of τ .

5.14 Let N,X1, X2, X3, . . . be independent, and let them all have (optimistic) geometric distribution
with parameter p = 1

6
. Calculate the expectation of

S =:
N
∑

k=1

(Xk + 1).

What has this got to do with Exercise 10?

Hint: ES = E(E(S |N)) =
∑∞

n=0 P(N = n)E(S |N = n).
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