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Imre Péter Tóth
Homework sheet 5 – solutions

5.1 Prove that

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

x21 + x22 + . . . x2n
x1 + x2 + . . . xn

dx1 dx2 . . . dxn =
2

3
.

5.2 Let f : [0; 1] → R be a continuous function. Prove that

(a)

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

f

(

x1 + x2 + . . . xn

n

)

dx1 dx2 . . . dxn = f

(

1

2

)

.

(b)

lim
n→∞

∫

1

0

∫

1

0

. . .

∫

1

0

f
(

(x1x2 . . . xn)
1/n
)

dx1 dx2 . . . dxn = f

(

1

e

)

.

(Hint: interprete these integrals as expectations.)

5.3 (homework) Let Xn ∼ Bin(n, 2
3
). Calculate limn→∞E

(

sin
(

(

Xn

n

)4
))

.

Solution: Xn = ξ1 + ξ2 + · · · + ξn where the ξi are i.i.d. with Xi ∼ B
(

2

3

)

, so the weak
law of large numbers says that Xn

n
⇒ 2

3
. The function x 7→ f(x) := sin(x4) is bounded and

continuous, so

lim
n→∞

E

(

sin

(

(

Xn

n

)4
))

= lim
n→∞

E

(

f

(

Xn

n

))

= f

(

2

3

)

= sin

(

(

2

3

)4
)

.

5.4 Poisson approximation of the binomial distribution. Fix 0 < λ ∈ R. Show that if Xn has
binomial distribution with parameters (n, p) such that np→ λ as n→ ∞, then Xn converges
to Poi(λ) weakly. This can be done in a completely elementary way, using your favourite
definition of weak convergence, or by using one of the stronger tools of weak convergence.

5.5 Continuous limit of the geometric distribution. Let Xn be geometrically distributed with
parameter pn = 1

n
and let Yn = 1

n
Xn. (So EYn = 1.) Find the weak limit of Yn. (Hint:

you can use the method of characteristic functions, but you can also calculate the limiting
distribution function directly.)

5.6 Continuous limit of the geometric distribution, general version. Show that if 0 ≤ pn → 0,
0 ≤ an → 0, pn

an
→ λ ∈ (0,∞) and Xn ∼ Geom(pn), then anXn ⇒ Exp(λ).

5.7 Let X be uniformly distributed on [−1; 1], and set Yn = nX .

a.) Calculate the characteristic function ψn of Yn.

b.) Calculate the pointwise limit lim
n→∞

ψn(t), if it exists.

c.) Does (the distribution of) Yn have a weak limit?

d.) How come?

5.8 (homework) Show that if Ψ is the characteristic function of some random variable X ,
then the complex conjugate Ψ̄ is also the characteristic function of some random variable Y .
(Hint: try to find out what Y is.)

Solution: If X has characteristic function Ψ(t) = EeitX , then Y := −X has characteristic
function ΨY (t) = EeitY = Ee−itX = EeitX = Ψ̄(t). We have used that X and t are real.
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5.9 Durrett [1], Exercise 3.3.1 (Hint: try to find the appropriate random variables. Use Exer-
cise 8.)

5.10 Durrett [1], Exercise 3.3.3

5.11 Durrett [1], Exercise 3.3.9

5.12 Durrett [1], Exercise 3.3.10. Show also that independence is needed.

5.13 Durrett [1], Exercise 3.3.11

5.14 Durrett [1], Exercise 3.3.12

5.15 Durrett [1], Exercise 3.3.13

5.16 Let X1, X2, . . . be i.i.d. random variables with density (w.r.t. Lebesgue measure) f(x) =
1

π
1

1+x2 . (So they have the Cauchy distribution.) Find the weak limit (as n → ∞) of the
average

X1 + · · ·+Xn

n
.

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solu-
tion is using characteristic functions. Calculating the characteristic function of the Cauchy
distribution is a little tricky, but you can look it up.

5.17 Durrett [1], Exercise 3.4.4

5.18 (homework) Durrett [1], Exercise 3.4.5 (Hint: Use Exercise 4.1 and Durrett [1], Exercise
3.2.14).

Solution:
∑n

m=1
Xm

(
∑n

m=1
X2

m)
1/2

=

∑n
m=1

Xm√
nσ

σ
(

∑n
m=1

X2
m

n

)1/2
.

We know from the central limit theorem that
∑n

m=1
Xm√

nσ
⇒ χ = N (0, 1), and we know from

the weak law of large numbers that
∑n

m=1
X2

m

n
⇒ σ2, which implies by Exercise 4.1 that

σ
(∑n

m=1
X2

m
n

)

1/2 ⇒ 1. Now Durrett [1], Exercise 3.2.14 implies the statement.
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