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Imre Péter Tóth
Homework sheet 6 – solutions

6.1 Durrett [1], Exercise 5.2.13

6.2 (homework) Let Xn be a simple random walk on Z starting from X0 = 0. (As before, this
means that Xn = ξ1+ξ2+ · · ·+ξn, where the ξi are i.i.d. with P(Xi = 1) = p = 1−P(Xi = −1),
and p ∈ [0, 1]. (p need not be 1

2
, so the walk may be asymmetric.) Use the martingale

convergence theorem to show that

a.) the walk reaches the set {−20, 30} with probability 1.

b.) If p ≥ 1

2
, then the walk reaches the point 30 with probability 1.

c.) If p ≤ 1

2
, then the walk reaches the point −20 with probability 1.

Solution:

a.) Assume first that p ≥ 1

2
, Then, as we have seen is class, Xn is a submartingale. Let

τ := inf{n|Xn ∈ {−20, 30}} be the first hitting time of the set {−20, 30}. This τ is a
stopping time, so the stopped process Xn∧τ is also a submartingale. Xn∧τ is also bounded,
so the martingale convergence theorem says that it is almost surely convergent. But, since
it is integer valued, it can only be convergent if it is eventually constant – meaning no more
jumps after a while. By construction, this can only happen if τ is reached, so P(τ < ∞) = 1.

Assume now that p ≤ 1

2
. Now Yn := −Xn is a submartingale, and the same argument

as above works with the same stopping time τ := inf{n|Xn ∈ {−20, 30}} = inf{n|Yn ∈
{−30, 20}}.

b.) If p ≥ 1

2
, Xn is a submartingale. Now let τ := inf{n|Xn = 30} be the first hitting time of the

point 30. Again, τ is a stopping time, so the stopped process Xn∧τ is also a submartingale.
This time Xn∧τ is only bounded from above, but the martingale convergence theorem still
applies, so Xn∧τ is almost surely convergent, which means P(τ < ∞) = 1.

c.) If p ≤ 1

2
, then Yn := −Xn is a submartingale, s if we set τ := inf{n|Xn = −20} =

inf{n|Yn = 20}, then Yn∧τ is a submartingale which is bounded from above, so the mar-
tingale convergence theorem applies, thus Xn∧τ is almost surely convergent, which means
P(τ < ∞) = 1.

6.3 (Pólya’s urn) In an urn there is initially (at time n = 0) a black and a white ball. At each
time step n = 1, 2, . . .

• we draw a ball from the urn, uniformly at random,

• we look at its colour,

• we put it back, and we add another ball of the same colour.

(So we add exactly one ball in each step.) Let Xn be the number of white balls in the urn after
n steps, and let Mn = Xn

n+2
be the proportion of white balls after n steps.

a.) Show that Xn is uniform on {1, 2, . . . , n+ 1}. (Hint: a possible solution is by induction.)

b.) Show that Mn is almost surely convergent.

c.) What is the distribution of M∞ := limn→∞Mn?
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6.4 (homework) In the (French style) Roulette, if you bet on “red”, you lose your bet with
probability 19

37
, and you win the amount of your bet with the remaining probability 18

37
. (E.g.

if you bet on “red” with HUF 1 and you win, then you get your HUF 1 back, plus you get
another HUF 1 as your winning.

You arrive at the casino with some money in your pocket, and keep betting on “red”. At each
spin, your bet may be anything between 0 and the amount of money you have. Let Xn be the
amount of your money after n spins. Show that – no matter what your strategy is – Xn is
convergent with probability 1.

Solution: Let ξn = 1 if the nth spin gives “red”, and ξn = −1 if not. This is an i.i.d. sequence.
The game is unfavourable, meaning Eξn < 0, so the sum Sn := ξ1+· · ·+ξn is a supermartingale.
If your bet in the nth step is Hn, then your money at time n is the discrete stochastic integral
Xn := (H • S)n. Now let us assume that you don’t see the future, so Hn is predictable.
(This is not written in the exercise, but we have to assume it in the name of common sense.
Without this assumption, the statement is false.) Now since Hn ≥ 0 by assumption, Xn is
also a supermartingle. It is also non-negative by assumption, so the martingale convergence
theorem says that it is almost surely convergent.

6.5 Alice and Bob keep tossing a possibly biased coin. Before each toss, they agree on a stake:
Alice will give this sum to Bob if the coin turns “heads”, and Bob will give the (same) sum to
Alice if it turns “tails”. The stake has to be a non-negative multiple of 1 penny, and they are
not allowed to risk more money than what they have. If they agree on a stake which is 0, then
the game ends. Show that sooner or later the game will end.

6.6 (homework) Harry is organizing a pyramid scheme in his family.
(See http://en.wikipedia.org/wiki/Pyramid scheme) The participants are not too persistent:
every participant keeps trying to recruit new participants until the first failure (i.e. until he is
first rejected). The probability of such a failure is p at every recruit attempt, independently of
the history of the scheme.

The first participant is Harry, he forms the 0-th generation alone. The first generation consists of
those recruited (directly) by Harry. The second generation consists of those recruited (directly)
by members of the first generation, and so on.

Let Zk denote the size of the k-th generation (k = 0, 1, 2, . . . ), and let N denote the total
number of participants in the scheme (meaning N =

∑
∞

k=0
Zk).

0-th question: What is the distribution of Z1 (which is the same as the distribution of the
number of participants recruited by any fixed member of the scheme)? This distribution has a
name.

Answer the questions below

I. for p = 2

3
,

II. for p = 1

2
,

III. for p = 1

3
:

a.) Let r be the probability that the scheme dies out (that is, one of the generations will already
be empty). Is r = 1?

b.) What is the expectation of Zn?

c.) What is the expectation of N?
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d.) In case “not dying out” has positive probability, what is the growth rate of Zn on this
event?

Solution: 0-th question: Let q = 1 − p. Successfully recruiting k people means k successes
and then 1 failure, so

P(Z1 = k) = qkp, k = 0, 1, 2, . . . .

So Z1 has a “pessimistic geometric distribution” with parameter p. As a result, the expectation
is m = EZ1 =

1

p
− 1.

From the description it follows that Zn is a Galton-Watson branching process with Z0 = 1.

I. If p = 2

3
, then m = 1

p
− 1 = 1

2
< 1, so the process is sub-critical. This implies that

a.) P(extinction) = 1.

b.) EZn = mn = 1

2n
.

c.) EN =
∑

∞

n=0
EZn =

∑
∞

n=0
mn = 1

1−m
= 2.

d.) The question is not relevant: “not dying out” has zero probability.

II. If p = 1

2
, then m = 1

p
− 1 = 1, so the process is critical. This implies that

a.) P(extinction) = 1. (A critical process always dies out unless it is degenerate such that
everybody has exactly 1 child.)

b.) EZn = mn = 1n = 1.

c.) EN =
∑

∞

n=0
EZn =

∑
∞

n=0
mn =

∑
∞

n=0
1 = ∞.

d.) The question is not relevant: “not dying out” has zero probability.

III. If p = 1

3
, then m = 1

p
− 1 = 2, so the process is super-critical. This implies that

a.) P(extinction) < 1.

b.) EZn = mn = 2n.

c.) EN =
∑

∞

n=0
EZn =

∑
∞

n=0
mn =

∑
∞

n=0
2n = ∞.

d.) This time the question is relevant: “not dying out” has positive probability. We know
that Zn

mn
is a non-negative martingale, so the martingale convergence theorem says

that Wn := Zn

mn
converges to some W∞. So Zn ∼ W∞mn = W∞2n. We have not seen

this, but it is true that W∞ > 0 on the event {no extinction} (which happens to have
probability 1

2
).
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