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CEU Budapest, fall semester 2016

Imre Péter Tóth
Homework sheet 7 – solutions

7.1 (homework) Let Fn be a filtration and X any random variable with E|X| < ∞. Let Xn =
E(X|Fn).

a.) Show that Xn is a martingale w.r.t. Fn.

b.) Show that Xn converges almost surely to some limit X∞.

c.) Give a specific example when X∞ 6= X .

d.) Give a specific example when X∞ = X .

Solution:

a.) Since Xn = E(X|Fn), we know that it is Fn-measurable and integrable. Now since Fn ⊂
Fn+1,

E(Xn+1|Fn) = E(E(X|Fn+1)|Fn) = E(X|Fn) = Xn.

b.) Since Xn = E(X|Fn), we know that EX+
n ≤ E|Xn| ≤ E|X|, so EX+

n is bounded by
E|X| < ∞. so the martingale convergence theorem ensures that Xn converges almost
surely.

d.) Let ξ1, ξ2, . . . be i.i.d., ξk ∼ B(1
2
). Let X =

∑∞
k=1

ξk
2k

(so X is uniform on [0, 1]). Let
Fn = σ(ξ1, . . . , ξn). Now

Xn := E(X|Fn) =
n
∑

k=1

ξk
2k

+
∞
∑

k=n+1

E
ξk
2k

=

(

n
∑

k=1

ξk
2k

)

+
1

2n+1
.

So Xn is X “rounded” to n bits (where we “round” not to an endpoint, but the middle of
each interval [ l

2n
, l+1

2n
]). Clearly Xn → X∞ = X almost surely.

c.) Just like before, let ξ1, ξ2, . . . be i.i.d., ξk ∼ B(1
2
). Let X =

∑∞
k=1

ξk
2k

(so X is uniform on
[0, 1]). But this time let

Fn = σ(ξ2, . . . , ξn),

so ξ1 is left out, and the information in ξ1 will not be represented in any Fn. Accordingly,

Xn := E(X|Fn) = E
ξ1
2
+

n
∑

k=2

ξk
2k

+
∞
∑

k=n+1

E
ξk
2k

=

(

n
∑

k=2

ξk
2k

)

+
1

4
+

1

2n+1
.

Now

X∞ =
1

4
+

∞
∑

k=2

ξk
2k

= X −
ξ1
2
+

1/2

2

Clearly X∞ 6= X – in particular, X∞ is uniform on [1
4
, 3
4
].

7.2 (homework) Let Xn be a martingale w.r.t. the filtration Fn on the probability space (Ω,F ,P)
and let the random variable τ : Ω → N be a stopping time, meaning

{τ = k} := {ω ∈ Ω | τ(ω) = k} ∈ Fk for every k.

Using the notation a ∧ b := min{a, b}, we introduce the process

Yn := Xτ∧n =

{

Xn if n < τ,

Xτ if n ≥ τ .

Show that Yn is also a martingale w.r.t. Fn.

Solution 1: We check the definition.
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a.) For any B ⊂ R measurable, {Yn ∈ B} = ({n < τ} ∩ {Xn ∈ B}) ∪ ({τ ≤ n} ∩ {Xτ ∈ B}) ∈
Fn, so Yn is adapted.

b.) |Yn| = |Xn∧τ | ≤ |X1| + |X2| + · · · + |Xn|, so E|Yn| ≤ E|X1| + · · · + E|Xn| < ∞, so Yn is
integrable.

c.) The essence is to check that E(Yn+1|Fn) = Yn. We show this by checking the definition of
the conditional expectation. We have seen that Yn ∈ Fn, so we only need that

∫

B

Yn dP =

∫

B

Yn+1 dP for B ∈ Fn.

For this purpose, let A = {τ ≤ n}, so A ∈ Fn.

• On the event A we have τ ≤ n, so n ∧ τ = τ , so Yn = Xτ . Also, we have τ ≤ n+ 1, so
Yn+1 = Xτ as well. All in all, on the event A we have Yn+1 = Yn.

• On the event Ac we have τ > n, so n∧ τ = n, so Yn = Xn. But we also have τ ≥ n+1,
so n+ 1 ∧ τ = n+ 1 and Yn+1 = Xn+1 (on Ac).

Now we take B ∈ Fn and write
∫

B

Yn dP =

∫

B∩A

Yn dP+

∫

B\A

Yn dP.

In the first term Yn = Yn+1, since B∩A ⊂ A. In the second term Yn = Xn, since B\A ⊂ Ac.
Now we use that B \ A ∈ Fn and E(Xn+1|Fn) = Xn to get

∫

B\A

Yn dP =

∫

B\A

Xn dP =

∫

B\A

Xn+1 dP.

We use that Xn+1 = Yn+1 on B \ A ⊂ Ac to conclude that
∫

B\A
Yn dP =

∫

B\A
Yn+1 dP.

Putting these together, we get

∫

B

Yn dP =

∫

B∩A

Yn dP+

∫

B\A

Yn dP =

∫

B∩A

Yn+1 dP+

∫

B\A

Yn+1 dP =

∫

B

Yn+1 dP.

Solution 2: Think of Xn as a stock price. An investor buys one stock at time 0 and sells it at
time τ . so the number of stocks she holds is

Hn :=

{

1 if n ≤ τ

0 if n > τ
.

Since τ is a stopping time, {τ ≤ n} ∈ Fn, so {Hn = 0} = {τ ≤ n − 1} ∈ Fn−1, meaning that
Hn is predictable. Hn is also bounded, so we know that the discrete stochastic integral

(H ·X)n :=

n
∑

m=1

Hm(Xm −Xm−1)

is also a martingale. But
Yn = X0 + (H ·X)n

and Xo ∈ F0 ⊂ Fn for every n, so Yn is also a martingale.

7.3 Durrett [1], Exercise 5.3.12 (Hint: Use Zn+1 =
∑Zn

k=1
ξn+1

k (with the notation of Durrett) or

Zn+1 =
∑Zn

k=1
Xn,k (with the notation of the lecture) to show that r∗ := P(limZn/µ

n > 0) is a
fixed point of the generating function (which is ϕ in the book and was g on the lecture).)
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7.4 Durrett [1], Exercise 5.3.13

7.5 (homework) Harry is organizing a pyramid scheme in his family.
(See http://en.wikipedia.org/wiki/Pyramid scheme) The participants are not too persistent:
every participant keeps trying to recruit new participants until the first failure (i.e. until he is
first rejected). The probability of such a failure is p at every recruit attempt, independently of
the history of the scheme.

The first participant is Harry, he forms the 0-th generation alone. The first generation consists of
those recruited (directly) by Harry. The second generation consists of those recruited (directly)
by members of the first generation, and so on.

Let Zk denote the size of the k-th generation (k = 0, 1, 2, . . . ), and let N denote the total
number of participants in the scheme (meaning N =

∑∞
k=0

Zk).

0-th question: What is the distribution of Z1 (which is the same as the distribution of the
number of participants recruited by any fixed member of the scheme)? This distribution has a
name.

Answer the questions below

I. for p = 2

3
,

II. for p = 1

2
,

III. for p = 1

3
:

a.) What is the probability that the scheme dies out (that is, one of the generations will already
be empty)?

b.) What is the expectation of N?

c.) In case “not dying out” has positive probability, what is the growth rate of Zn on this
event?

Solution: 0-th question: Let q = 1 − p. Successfully recruiting k people means k successes
and then 1 failure, so

P(Z1 = k) = qkp, k = 0, 1, 2, . . . .

So Z1 has a “pessimistic geometric distribution” with parameter p. As a result, the generating
function is

g(z) =

∞
∑

k=0

qkpz
k =

p

1− qz

and the expectation is m = EZ1 =
1

p
− 1.

From the description it follows that Zn is a Galton-Watson branching process with Z0 = 1.

I. If p = 2

3
, then m = 1

p
− 1 = 1

2
< 1, so the process is subcritical. This implies that

a.) P(extinction) = 1.

b.) EN =
∑∞

n=0
EZn =

∑∞
n=0

mn = 1

1−m
= 2.

c.) The question is not relevant: “not dying out” has zero probability.

II. If p = 1

2
, then m = 1

p
− 1 = 1, so the process is critical. This implies that

a.) P(extinction) = 1. (A critical process always dies out unless it is denerate such that
everybody has exactly 1 child.)

b.) EN =
∑∞

n=0
EZn =

∑∞
n=0

mn =
∑∞

n=0
1 = ∞.

c.) The question is not relevant: “not dying out” has zero probability.
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III. If p = 1

3
, then m = 1

p
− 1 = 2, so the process is supercritical. This implies that

a.) r∞ = P(extinction) < 1, and we need to calculate: r∞ is the only solution in [0, 1) of

the fixed point equation g(z) = z. In our case g(z) = p
1−qz

= 1/3

1− 2

3
z
= 1

3−2z
and the

equation is
1

3− 2z
= z.

The solutions are z = 1

2
and z = 1, so the only soultion in [0, 1) is r∞ = 1

2
.

b.) EN =
∑∞

n=0
EZn =

∑∞
n=0

mn =
∑∞

n=0
2n = ∞.

c.) This time the question is relevant: “not dying out” has probability 1

2
. We know

that Zn

mn is a martingale. Since V ar(Z1) < ∞, we have seen that the L2 martingale
convergence theorem says that Wn := Zn

mn converges to some W∞ not only almost
surely, but also in L2, so EW∞ = EW0 = 1. This means that {W∞ 6= 0} has positive
probability, and on this event Zn ∼ mn = 2n. (Remark: we know from Exercise 3 that
if P(W∞ 6= 0) > 0, then {W∞ 6= 0} = {Zn 9 0}.)
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