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CEU Budapest, fall semester 2013

Imre Péter Tóth
Homework sheet 2 – due on 07.10.2013 – and exercises for practice

2.1 (homework) Exercise 3 of “Homework sheet 1”, delayed from last week (unless already done)

2.2 (homework) Exercise 4 of “Homework sheet 1”, delayed from last week (unless already done)

2.3 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai) (and both
sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable sets
(i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) <∞, then µ(∩∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing a
counterexample for the statement when this condition does not hold.

2.4 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground
floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a
destination at random, uniformly out of the 10 floors, independently of the others. Let X
denote the number of floors on which the elevator stops – i.e. the number of floors that were
chosen by at least one person. Calculate the expectation and the variance of X . (hint: First
notice that the distribution of X is hard to calculate. Find a way to calculate the expectation
and the variance without that.)

2.5 Calculate the characteristic function of

(a) The Bernoulli distribution B(p) (see Homework sheet 1)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ on
{0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν on
{1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) (homework) The Poisson distribution with parameter λ – that is, the distribution η on

{0, 1, 2 . . .} with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) (homework) The exponential distribution with parameter λ – that is, the distribution
on R with density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.
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2.6 (homework) Calculate the characteristic function of the normal distribution N (m, σ2). (Re-
member the definition from the old times: N (m, σ2) is the distribution on R with density
(w.r.t. Lebesgue measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can and
should use the fact that

∫

∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

2.7 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . . mea-
surable real valued functions on Ω which converge to the limit function pointwise, µ-almost
everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set of x-es
with µ-measure zero.) Assume furthermore that the fn admit a common integrable dominating
function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and n ∈ N, and
∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued ran-
dom variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment of X
exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.
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