Probability 1 CEU Budapest, fall semester 2013 Imre Péter Tóth Homework sheet 3 – due on 07.10.2013 – and exercises for practice

- 3.1 (homework) Poisson approximation of the binomial distribution. Fix $0 < \lambda \in \mathbb{R}$. Show that if X_n has binomial distribution with parameters (n, p) such that $np \to \lambda$ as $n \to \infty$, then X_n converges to $Poi(\lambda)$ weakly.
- 3.2 (homework) Let X be uniformly distributed on [-1; 1], and set $Y_n = nX$.
 - a.) Calculate the characteristic function ψ_n of Y_n .
 - b.) Calculate the pointwise limit $\lim_{n\to\infty}\psi_n(t)$, if it exists.
 - c.) Does (the distribution of) Y_n have a weak limit?
 - d.) How come?

3.3 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every n, but

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -1$$

almost surely.

- 3.4 Exchangeability of integral and limit. Consider the sequences of functions $f_n : [0,1] \to \mathbb{R}$ and $g_n : [0,1] \to \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$, such that $f_n(x) \to f(x)$ and $g_n(x) \to g(x)$ for Lebesgue almost every $x \in [0,1]$? What is $\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right)$ and $\lim_{n \to \infty} \left(\int_0^1 g_n(x) dx \right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
 - (a)

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < 1/n, \\ 2n - n^2 x & \text{if } 1/n \le x \le 2/n, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Write n as $n = 2^k + l$, where k = 0, 1, 2... and $l = 0, 1, ..., 2^k - 1$ (this can be done in a unique way for every n). Now let

$$g_n(x) = \begin{cases} 1 & \text{if } \frac{l}{2^k} \le x < \frac{l+1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

3.5 (homework) Exchangeability of integrals. Consider the following function $f : \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 \le x - y \le 1, \\ -1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 < y - x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

- 3.6 Weak convergence and densities.
 - (a) (homework) Prove the following

Theorem 1 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
 - iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.