3.1 (homework) Poisson approximation of the binomial distribution. Fix $0<\lambda \in \mathbb{R}$. Show that if X_{n} has binomial distribution with parameters (n, p) such that $n p \rightarrow \lambda$ as $n \rightarrow \infty$, then X_{n} converges to $\operatorname{Poi}(\lambda)$ weakly.
3.2 (homework) Let X be uniformly distributed on $[-1 ; 1]$, and set $Y_{n}=n X$.
a.) Calculate the characteristic function ψ_{n} of Y_{n}.
b.) Calculate the pointwise $\operatorname{limit} \lim _{n \rightarrow \infty} \psi_{n}(t)$, if it exists.
c.) Does (the distribution of) Y_{n} have a weak limit?
d.) How come?
3.3 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
3.4 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

3.5 (homework) Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
3.6 Weak convergence and densities.
(a) (homework) Prove the following

Theorem 1 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_{n} \Rightarrow \mu$ (weakly).
(Hint: denote the cumulative distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \lim _{\inf }^{n \rightarrow \infty}{ }^{\prime} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.
(b) Show examples of the following facts:
i. It can happen that the f_{n} converge pointwise to some f, but the sequence μ_{n} is not weakly convergent, because f is not a density.
ii. It can happen that the μ_{n} are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but μ is not absolutely continuous.
iii. It can happen that the μ_{n} and also μ are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but $f_{n}(x)$ does not converge to $f(x)$ for any x.

