Probability 1
 CEU Budapest, fall semester 2013
 Imre Péter Tóth
 Homework sheet 9 - due on 02.12.2013 - and exercises for practice

9.1 (homework) Durrett [1], Exercise 8.1.3
9.2 (homework) Durrett [1], Exercise 8.2.3
9.3 It is not hard to show that if ξ is a standard Gaussian random variable and $x \geq 1$, then

$$
\mathbb{P}(|X| \geq x) \leq \sqrt{\frac{2}{\pi}} e^{-\frac{x^{2}}{2}}
$$

Use this to show that if ξ_{1}, ξ_{2}, \ldots are i.i.d. standard Gaussian, then, with probability 1 , the event $\left\{\left|\xi_{n}\right|>2 \ln n\right\}$ occurs for at most finitely many n-s.
9.4 Paul Lévy construction of the Wiener process. In a possible construction of the Wiener process (or Brownian motion) on $[0,1]$ - discussed in class - we define a sequence of piecewise linear continuous random functions so that we first define f_{n} at dyadic rationals that are multiples of $\frac{1}{2^{n}}$, inheriting every second value (at multiples of $\frac{1}{2^{n-1}}$) form f_{n-1}, and setting the values at the remaining points (of the form $\frac{2 k-1}{2^{n}}$) to be the average of the two neighbouring values, plus an independent Gaussian random value with mean 0 and variance $\frac{1}{4^{n}}$. Then we extend f_{n} to $[0,1]$ piecewise linearly.

Formally: we take independent standard Gaussian random variables ξ_{0} and $\xi_{n, k}$ where $n=$ $1,2, \ldots$ and $k=1,2, \ldots, 2^{n-1}$. Then

- In the 0 th step we fix $f_{0}(0)=0$ and $f_{0}(1)=\xi_{0}$. We connect these two values linearly.
- In the 1 st step we leave $f_{1}(0)=f_{0}(0)$ and $f_{1}(1)=f_{0}(1)$, but also set $f_{1}\left(\frac{1}{2}\right)=f_{0}\left(\frac{1}{2}\right)+\frac{1}{2} \xi_{1,1}$. We connect these three values linearly.
-in the nth step we leave $f_{n}\left(\frac{k}{2^{n-1}}\right)=f_{n-1}\left(\left(\frac{k}{2^{n-1}}\right)\right.$ for $k=0,1, \ldots, 2^{n-1}$, but also set $f_{n}\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right)=f_{n-1}\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right)+\frac{1}{2^{n}} \xi_{n, k}$ for $k=1, \ldots, 2^{n-1}$. We connect these $2^{n}+1$ values linearly.

Notice that, in this construction, the difference $g_{n}:=f_{n+1}-f_{n}$ is the sum of 2^{n} "tent" maps with disjoint supports and i.i.d. Gaussian "heights".
Use the statement of Exercise 3 to show that, with probability 1, the series

$$
\lim _{n \rightarrow \infty} f_{n}=f_{0}+\sum_{n=0}^{\infty} g_{n}
$$

is uniformly absolutely convergent.

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

