Probability 1
CEU Budapest, fall semester 2013
Imre Péter Tóth
Final exam, 09.12.2013
Working time: 150 minutes

1. Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be the characteristic function of a real valued random variable X.
a.) Prove that ψ is continuous. Hint: use that $t \mapsto e^{i t}$ is bounded for $t \in \mathbb{R}$.
b.) Prove that if $\mathbb{E}|X|<\infty$, then ψ is differentiable and $\psi^{\prime}(0)=i \mathbb{E} X$. Hint: use that $t \mapsto e^{i t}$ is Lipschitz continuous for $t \in \mathbb{R}$.
2. Let $f:[0 ; 1] \rightarrow \mathbb{R}$ be a continuous function. Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n} .
$$

3. We toss a fair coin infinitely many times and define the random varibales

$$
X_{i}:=\left\{\begin{array}{l}
1, \text { if the } i \text { th and }(i+1) \text { th tosses are both Heads } \\
0, \text { otherwise }
\end{array}\right.
$$

for $i=1,2, \ldots$ Let $S_{n}=X_{1}+\cdots+X_{n}$. Find and prove the weak limit of the sequence $\frac{S_{n}}{n}$.
4. Let Z_{n} be a Galton-Watson branching process with 1-step offspring distribution

k	0	1	2	3
$\mathbb{P}(k$ children $)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Show that the limit $\lim _{n \rightarrow \infty} \frac{Z_{n}}{(3 / 2)^{n}}$ exists almost surely, and that it is not identically zero. "Show" means: sketch the proof.
5. A flea performs a simple asymmetric, trapped random walk on the set $\{-10,-9, \ldots, 9,10\}$, meaning that in every step

- it jumps 1 unit "down" with probability $\frac{2}{3}$ and "up" with probability $\frac{1}{3}$, independently of the past, unless it is at one of the endpoints,
- if it is at the endpoint -10 or 10 , then it stays there (forever).

The flea starts from 0 . Show that sooner or later it will reach one of the endpoints, and calculate the probability that this endpoint is 10 .

Hint: One possible solution is to notice that if the position of the flea after n jumps is X_{n}, then $2^{X_{n}}$ is a martingale.

