Probability 1
CEU Budapest, fall semester 2013
Imre Péter Tóth

Replacement midterm exam, 26.11.2013

Working time: 60 minutes
Every question is worth 10 points. Maximum total score: 30 .

1. Is there a sequence of random variables X_{1}, X_{2}, \ldots such that $X_{n} \rightarrow 0$ weakly, but not in probability? If not, why not? If yes, give an example.
2. Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with $\mathbb{E} X_{i}=0$ and $\operatorname{Var} X_{i}<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Show that $\frac{S_{n}}{n^{3 / 4}} \rightarrow 0$ weakly.
3. As a space probe leaves the Solar System, its distance from Earth increases (asymptotically) linearly. The control center on Earth tries to communicate with the probe once every day, but the success of a communication attempt is inversely proportional to the square of the distance. What is the probability that there will be infinitely many successful attempts?
4. Let X_{1}, X_{2}, \ldots be independent random variables with $\operatorname{Exp}(1)$ distribution, and let $M_{n}=$ $\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Show that the sequence $Y_{n}=M_{n}-\log n$ converges weakly, and calculate the distribution function of the limit.
