Probability 1 CEU Budapest, fall semester 2013 Imre Péter Tóth Midterm exam, 06.11.2013 Working time: 60 minutes Every question is worth 10 points. Maximum total score: 30.

- 1. Fix $0 < \lambda \in \mathbb{R}$ and let X_1, X_2, \ldots be independent, identically distributed random variables with a common $Exp(\lambda)$ distribution. Let $a_n = c \ln n$ (for $n = 1, 2, \ldots$) with some $0 < c \in \mathbb{R}$. What is the probability that $X_n > a_n$ occurs for infinitely many *n*-s?
- 2. Let the random variable Y_n have Poisson distribution with parameter n. Does the sequence $\frac{Y_n n}{\sqrt{n}}$ converge weakly? If yes, what is the limit?
- 3. Is there a sequence Z_1, Z_2, \ldots of random variables which converges weakly to some Z with $\mathbb{E}Z = 0$, but $\mathbb{E}Z_n \to \infty$? If no, prove it. If yes, give an example.
- 4. Bob keeps drawing cards from a pile of n different cards, with replacement, meaning that every card drawn is chosen uniformly and independently of the others. Let Y_k^n be the number of draws he needs in order to see at least k different cards, and let $U_n = Y_n^n$ be the number of draws until all cards are seen.
 - (a) What is the distribution of $(Y_{k+1}^n Y_k^n)$, that is, the number of draws he needs to find yet another new card if he has already seen k?
 - (b) Calculate the expectation and variance of U_n .
 - (c) Find the limit distribution of $\frac{U_n}{n \log n}$.