Probability 1
CEU Budapest, fall semester 2013
Imre Péter Tóth
Midterm exam, 06.11.2013
Working time: 60 minutes
Every question is worth 10 points. Maximum total score: 30.

1. Fix $0<\lambda \in \mathbb{R}$ and let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with a common $\operatorname{Exp}(\lambda)$ distribution. Let $a_{n}=c \ln n($ for $n=1,2, \ldots$) with some $0<c \in \mathbb{R}$. What is the probability that $X_{n}>a_{n}$ occurs for infinitely many n-s?
2. Let the random variable Y_{n} have Poisson distribution with parameter n. Does the sequence $\frac{Y_{n}-n}{\sqrt{n}}$ converge weakly? If yes, what is the limit?
3. Is there a sequence Z_{1}, Z_{2}, \ldots of random variables which converges weakly to some Z with $\mathbb{E} Z=0$, but $\mathbb{E} Z_{n} \rightarrow \infty$? If no, prove it. If yes, give an example.
4. Bob keeps drawing cards from a pile of n different cards, with replacement, meaning that every card drawn is chosen uniformly and independently of the others. Let Y_{k}^{n} be the number of draws he needs in order to see at least k different cards, and let $U_{n}=Y_{n}^{n}$ be the number of draws until all cards are seen.
(a) What is the distribution of $\left(Y_{k+1}^{n}-Y_{k}^{n}\right)$, that is, the number of draws he needs to find yet another new card if he has already seen k ?
(b) Calculate the expectation and variance of U_{n}.
(c) Find the limit distribution of $\frac{U_{n}}{n \log n}$.
