Probability 1
 CEU Budapest, fall semester 2013
 Imre Péter Tóth
 sample exercises for the exam, 07.12.2013

A possible exam could consist of any 5 of the exercises below.

1. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega=[0,1] ; \mathcal{F}$ the Borel σ-algebra and \mathbb{P} the Lebesgue measure on $[0,1]$ (resticted to \mathcal{F}). Let $X: \Omega \rightarrow \mathbb{R}$ be given by $X(\omega)=\cot (\pi \omega)$.
a.) Describe the push-forward μ of \mathbb{P} by X (defined by $\left.\mu(A):=\mathbb{P}\left(X^{-1}(A)\right)\right)$.
b.) What is the distribution of the random variable X ?

Solution:

a.) The measure μ is absolutely continuous w.r.t. Lebesgue measure on \mathbb{R}, and has the density $\varphi(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
b.) This μ is exactly the distribution of X and is called the Cauchy distribution.
2. Is there a sequence of events A_{1}, A_{2}, \ldots on the same probability space such that

$$
\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty \quad \text { and } \quad \mathbb{P}\left(A_{i} \text { infinitely often }\right)=0 \quad ?
$$

Solution: Yes. For example $(\Omega, \mathcal{F}, \mathbb{P})=([0,1], \mathcal{B}, L e b)$ and $A_{n}:=\left[0, \frac{1}{n}\right]$ will do.
Remark: Note that these A_{i} are not independent. Such a sequence of independent events cannot exist according to the Borel-Cantelli lemma.
3. Durrett, Exercise 2.4.3

Solution: Let Y be uniformly distributed on the unit disk of \mathbb{R}^{2} and let $\xi=\log |Y|$. Then for $r \in[0,1]$ we have $\mathbb{P}(|Y| \leq r)=\frac{r^{2} \pi}{1^{2} \pi}=r^{2}$, so $|Y|$ has density $f(r)=\frac{\mathrm{d}}{\mathrm{d} r} r^{2}=2 r$ (w.r.t. Lebesgue measure on $[0,1])$. Now we can calculate $c:=\mathbb{E} \xi=\int_{0}^{1} \log (r) f(r) \mathrm{d} r=-\frac{1}{2}$.
Now if Y_{1}, Y_{2}, \ldots are i.i.d. distributed as Y and $\xi_{i}=\log \left|Y_{i}\right|$, then the suquence X_{i} of the exercise can be obtained as $X_{i}:=\left|X_{i-1}\right| Y_{i}$ for $i=1,2, \ldots$, which implies that $\log \left|X_{n}\right|=\sum_{i=1}^{n} \xi_{i}$. Since the ξ_{i} are i.i.d., the strong law of large numbers gives $\frac{1}{n} \log \left|X_{n}\right|=$ $\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \rightarrow c=-\frac{1}{2}$ almost surely.
4. Let X_{1}, X_{2}, \ldots be random variables on the same probability space such that $\mathbb{E} X_{i}=0$, $\operatorname{Var} X_{i}=1, \operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{1}{2}$ when $|i-j|=1$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ when $|i-j|>1$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Show that $\frac{S_{n}}{n} \rightarrow 0$ in probability.
Solution: $\operatorname{Var} S_{n}=\sum_{i, j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)=n \operatorname{Var}\left(X_{1}\right)+2(n-1) \operatorname{Cov}\left(X_{1}, X_{2}\right)=2 n-1$, so $\operatorname{Var} \frac{S_{n}}{n}=\frac{2 n-1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Now, since $\mathbb{E} \frac{S_{n}}{n}=0$, Chebyshev's inequality gives $\mathbb{P}\left(\left|\frac{S_{n}}{n}-0\right|>\varepsilon\right) \leq \frac{\operatorname{Var} \frac{S_{n}}{n}}{\varepsilon^{2}} \rightarrow 0$ for every $\varepsilon>0$.
5. Let $Y \sim \operatorname{Poi}(\lambda)$ for some $\lambda>0$ and for $n=1,2, \ldots$ let $X_{n} \sim \operatorname{Bin}\left(n, p_{n}\right)$ such that $n p_{n} \rightarrow \lambda$. Show that $X_{n} \rightarrow Y$ weakly.
Solution: Calculate the characteristic function of X_{n}, take the (pointwise) limit and refer to the continuity theorem.
6. Let X be an integrable random variable and $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ a filtration on the same probability space. Show that the process $X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$ is a martingale.
Solution: Check the definition using the basic properties of conditional expectation.
7. Durrett, Exercise 5.1.11

Solution: We know from the geometric interpretation of conditional expectation for L^{2} functions that if $X=\mathbb{E}(Y \mid \mathcal{G})$, then $\mathbb{E} Y^{2}=\mathbb{E} X^{2}+\mathbb{E}\left[(Y-X)^{2}\right]$. So the assumption of the exercise gives $\mathbb{E}\left[(Y-X)^{2}\right]=0$, which implies that $Y-X=0$ almost surely.
8. Bob arrives to a casino with a million dollars and starts to gamble. Unfortunately, there are no favourable games at the casino: whatever he plays, is fair or unfavourable. He is allowed to risk (and lose) all his money, but there is no credit. Let X_{n} denote Bob's fortune after n games. Show that X_{n} is almost surely convergent, whatever strategy Bob follows.
Solution: Since all games are unfavourable or fair, $-X_{n}$ is a submartingale. Since there is no credit, $-X_{n} \leq 0$, which can also be written as $X_{n}^{+}=0$, so $\mathbb{E} X_{n}^{+}=0$. Now the martingale convergence theorem states that $-X_{n}$ converges almost surely.
9. Let B_{t} be a Brownian motion (Wiener process). What is the value of the arclength

$$
s(\omega):=\sup \left\{\sum_{i=1}^{n} \sqrt{\left(t_{i}-t_{i-1}\right)^{2}+\left(B_{t_{i}}(\omega)-B_{t_{i-1}}(\omega)\right)^{2}}: 0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1\right\}
$$

for a typical $\omega \in \Omega$?
Solution: The arclength is at least as much as the total variation

$$
v=v(\omega):=\sup \left\{\sum_{i=1}^{n}\left|B_{t_{i}}(\omega)-B_{t_{i-1}}(\omega)\right|: 0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1\right\},
$$

which we know is almost surely infinite (since even the quadratic variation is nonzero).

