Probability 1 CEU Budapest, fall semester 2013 Imre Péter Tóth sample exercises for the exam, 07.12.2013

A possible exam could consist of any 5 of the exercises below.

- 1. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = [0, 1]$; \mathcal{F} the Borel σ -algebra and \mathbb{P} the Lebesgue measure on [0, 1] (resticted to \mathcal{F}). Let $X : \Omega \to \mathbb{R}$ be given by $X(\omega) = \cot(\pi \omega)$.
 - a.) Describe the push-forward μ of \mathbb{P} by X (defined by $\mu(A) := \mathbb{P}(X^{-1}(A)))$.
 - b.) What is the distribution of the random variable X?

Solution:

- a.) The measure μ is absolutely continuous w.r.t. Lebesgue measure on \mathbb{R} , and has the density $\varphi(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.
- b.) This μ is exactly the distribution of X and is called the Cauchy distribution.
- 2. Is there a sequence of events A_1, A_2, \ldots on the same probability space such that

$$\sum_{i=1}^{\infty} \mathbb{P}(A_i) = \infty \quad \text{and} \quad \mathbb{P}(A_i \text{ infinitely often}) = 0 \quad ?$$

Solution: Yes. For example $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}, Leb)$ and $A_n := [0, \frac{1}{n}]$ will do.

Remark: Note that these A_i are not independent. Such a sequence of independent events cannot exist according to the Borel-Cantelli lemma.

3. Durrett, Exercise 2.4.3

Solution: Let Y be uniformly distributed on the unit disk of \mathbb{R}^2 and let $\xi = \log |Y|$. Then for $r \in [0,1]$ we have $\mathbb{P}(|Y| \leq r) = \frac{r^2 \pi}{1^2 \pi} = r^2$, so |Y| has density $f(r) = \frac{d}{dr}r^2 = 2r$ (w.r.t. Lebesgue measure on [0,1]). Now we can calculate $c := \mathbb{E}\xi = \int_0^1 \log(r)f(r) \, dr = -\frac{1}{2}$.

Now if Y_1, Y_2, \ldots are i.i.d. distributed as Y and $\xi_i = \log |Y_i|$, then the suquence X_i of the exercise can be obtained as $X_i := |X_{i-1}|Y_i$ for $i = 1, 2, \ldots$, which implies that $\log |X_n| = \sum_{i=1}^n \xi_i$. Since the ξ_i are i.i.d., the strong law of large numbers gives $\frac{1}{n} \log |X_n| = \frac{1}{n} \sum_{i=1}^n \xi_i \to c = -\frac{1}{2}$ almost surely.

4. Let X_1, X_2, \ldots be random variables on the same probability space such that $\mathbb{E}X_i = 0$, $\operatorname{Var}X_i = 1$, $\operatorname{Cov}(X_i, X_j) = \frac{1}{2}$ when |i - j| = 1 and $\operatorname{Cov}(X_i, X_j) = 0$ when |i - j| > 1. Let $S_n = X_1 + \cdots + X_n$. Show that $\frac{S_n}{n} \to 0$ in probability.

Solution: $\operatorname{Var} S_n = \sum_{i,j=1}^n \operatorname{Cov}(X_i, X_j) = n \operatorname{Var}(X_1) + 2(n-1) \operatorname{Cov}(X_1, X_2) = 2n-1,$ so $\operatorname{Var} \frac{S_n}{n} = \frac{2n-1}{n^2} \to 0$ as $n \to \infty$. Now, since $\mathbb{E} \frac{S_n}{n} = 0$, Chebyshev's inequality gives $\mathbb{P}(|\frac{S_n}{n} - 0| > \varepsilon) \leq \frac{\operatorname{Var} \frac{S_n}{\varepsilon^2}}{\varepsilon^2} \to 0$ for every $\varepsilon > 0$.

5. Let $Y \sim Poi(\lambda)$ for some $\lambda > 0$ and for n = 1, 2, ... let $X_n \sim Bin(n, p_n)$ such that $np_n \to \lambda$. Show that $X_n \to Y$ weakly.

Solution: Calculate the characteristic function of X_n , take the (pointwise) limit and refer to the continuity theorem.

6. Let X be an integrable random variable and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ a filtration on the same probability space. Show that the process $X_n = \mathbb{E}(X | \mathcal{F}_n)$ is a martingale.

Solution: Check the definition using the basic properties of conditional expectation.

7. Durrett, Exercise 5.1.11

Solution: We know from the geometric interpretation of conditional expectation for L^2 functions that if $X = \mathbb{E}(Y | \mathcal{G})$, then $\mathbb{E}Y^2 = \mathbb{E}X^2 + \mathbb{E}[(Y - X)^2]$. So the assumption of the exercise gives $\mathbb{E}[(Y - X)^2] = 0$, which implies that Y - X = 0 almost surely.

8. Bob arrives to a casino with a million dollars and starts to gamble. Unfortunately, there are no favourable games at the casino: whatever he plays, is fair or unfavourable. He is allowed to risk (and lose) all his money, but there is no credit. Let X_n denote Bob's fortune after n games. Show that X_n is almost surely convergent, whatever strategy Bob follows.

Solution: Since all games are unfavourable or fair, $-X_n$ is a submartingale. Since there is no credit, $-X_n \leq 0$, which can also be written as $X_n^+ = 0$, so $\mathbb{E}X_n^+ = 0$. Now the martingale convergence theorem states that $-X_n$ converges almost surely.

9. Let B_t be a Brownian motion (Wiener process). What is the value of the arclength

$$s(\omega) := \sup\left\{\sum_{i=1}^{n} \sqrt{(t_i - t_{i-1})^2 + (B_{t_i}(\omega) - B_{t_{i-1}}(\omega))^2} : 0 = t_0 < t_1 < t_2 < \dots < t_n = 1\right\}$$

for a typical $\omega \in \Omega$?

Solution: The arclength is at least as much as the total variation

$$v = v(\omega) := \sup\left\{\sum_{i=1}^{n} |B_{t_i}(\omega) - B_{t_{i-1}}(\omega)| : 0 = t_0 < t_1 < t_2 < \dots < t_n = 1\right\},$$

which we know is almost surely infinite (since even the quadratic variation is nonzero).