CEU Budapest, fall semester 2013

Imre Péter Tóth
Homework sheet 4 - solutions
4.1 (homework) For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$.
(Hint: estimate the logarithm of $(1-p)$ with p.)
Solution: For $0 \leq p_{k} \nsupseteq 1$ we have that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(1-p_{k}\right)>-\infty \tag{1}
\end{equation*}
$$

Now if $p_{k} \rightarrow 0$, then this is clearly false. If $p_{k} \rightarrow 0$, then we get from the linear approximation of $x \mapsto \ln (1+x)$ near $x_{0}=0$ that - except possibly for finitely many k-s -

$$
-p_{k} \geq \ln \left(1-p_{k}\right) \geq-2 p_{k} .
$$

This implies that

$$
C-\sum_{k=1}^{n} p_{k} \geq \sum_{k=1}^{n} \ln \left(1-p_{k}\right) \geq C-2 \sum_{k=1}^{n} p_{k}
$$

which means that (1) holds if and only if $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{k}<\infty$.
4.2 Durrett [1], Exercise 3.3.1
4.3 Durrett [1], Exercise 3.3.3
4.4 Durrett [1], Exercise 3.3.9
4.5 (homework) Durrett [1], Exercise 3.3.10. Show also that independence is needed.

Solution:

a.) Denote the characteristic functions of X_{n}, Y_{n} and $X_{n}+Y_{n}$ by ψ_{n}, φ_{n} and ρ_{n}, respectively. Then the assumptions about independence give $\rho_{n}(t)=\psi_{n}(t) \varphi_{n}(t)$ for every $t \in \mathbb{R}$ and $1 \leq n \leq \infty$, and the continuity theorem gives $\psi_{n}(t) \rightarrow \psi_{\infty}(t)$ and $\varphi_{n}(t) \rightarrow \varphi_{\infty}(t)$, so we get $\rho_{n}(t) \rightarrow \rho_{\infty}(t)$. Using the continuity theorem again gives that $X_{n}+Y_{n} \Rightarrow X_{\infty}+Y_{\infty}$.
b.) To see that independence is needed, consider the following example. For $1 \leq n<\infty$ let $X_{n} \sim B\left(\frac{1}{2}\right)$ and $Y_{n}=1-X_{n}$, so $Y_{n} \sim B\left(\frac{1}{2}\right)$ also. For $n=\infty$ let $X_{\infty} \sim B\left(\frac{1}{2}\right)$ again, but set $Y_{\infty}=X_{\infty}$. Again, this implies $Y_{\infty} \sim B\left(\frac{1}{2}\right)$. Clearly $X_{n} \Rightarrow X_{\infty}$ and $Y_{n} \Rightarrow Y_{\infty}$, but $X_{n}+Y_{n} \equiv 1 \nRightarrow X_{\infty}+Y_{\infty}$, because e.g. $\mathbb{P}\left(X_{\infty}+Y_{\infty}=1\right)=0$.
4.6 Durrett [1], Exercise 3.3.11
4.7 (homework) Durrett [1], Exercise 3.3.12

Solution: Let ξ_{1}, ξ_{2}, \ldots be independent and uniform on the two-element set $\{-1 ; 1\}$, and set $X_{n}=\sum_{m=1}^{n} \frac{\xi_{m}}{2^{m}}$. Then the characteristic function of the ξ_{m} is

$$
\psi_{\xi}(t)=\frac{1}{2} e^{i t(-1)}+\frac{1}{2} e^{i t 1}=\cos (t)
$$

and the characteristic function of X_{n} is

$$
\psi_{X_{n}}(t)=\prod_{m=1}^{n} \psi_{\xi}\left(\frac{t}{2^{m}}\right)=\prod_{m=1}^{n} \cos \left(\frac{t}{2^{m}}\right) .
$$

But notice that X_{n} is uniform on the 2^{n}-element set

$$
\left\{\frac{k}{2^{n}}: k=-2^{n}+1 ;-2^{n}+3 ;-2^{n}+5 ; \ldots ; 2^{n}-3 ; 2^{n}-1\right\}
$$

so X_{n} converges weakly to some X with the (continuous) uniform distribution on $[-1 ; 1]$. (This can easily be seen e.g. from the pointwise convergence of the distribution functions.) So the characteristic function of X is

$$
\psi_{X}(t)=\int_{-1}^{1} e^{i t x} \frac{1}{2} \mathrm{~d} x=\frac{\sin t}{t}
$$

so the continuity theorem states that

$$
\frac{\sin t}{t}=\lim _{n \rightarrow \infty} \psi_{X_{n}}(t)=\prod_{m=1}^{\infty} \cos \left(\frac{t}{2^{m}}\right)
$$

4.8 Durrett [1], Exercise 3.3.13

References

[1] Durrett, R. Probability: Theory and Examples. Cambridge University Press (2010)

