Probability 1 CEU Budapest, fall semester 2013 Imre Péter Tóth Homework sheet 5 – solutions

5.1 (homework) Let X_1, X_2, \ldots be i.i.d. random variables with density (w.r.t. Lebesgue measure) $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. (So they have the Cauchy distribution.) Find the weak limit (as $n \to \infty$) of the average

$$\frac{X_1 + \dots + X_n}{n}$$

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is using characteristic functions. Calculating the characteristic function of the Cauchy distribution is a little tricky, but you can look it up.

Solution: The characteristic function of the Cauchy distribution is $\psi_{X_k}(t) = e^{-|t|}$ (see e.g. Durrett [1], Example 3.3.9). So $S_n = X_1 + \cdots + X_n$ has characteristic function $\psi_{S_n}(t) = (\psi_{X_k}(t))^n = e^{-n|t|}$ and $\frac{S_n}{n}$ has characteristic function $\psi_{\frac{S_n}{n}}(t) = \psi_{S_n}\left(\frac{t}{n}\right) = e^{-|t|}$. This means that $\frac{S_n}{n}$ has the same Cauchy distribution as the X_k for every n, so it also converges to the Cauchy distribution weakly.

Note that this does not contradict the weak law of large numbers, because our X_k do not have an expectation.

- 5.2 Durrett [1], Exercise 3.3.20
- 5.3 (homework) Durrett [1], Exercise 3.4.4

Solution 1: My solution, no trickery. We calculate the limiting distribution function:

$$F_n(x) := \mathbb{P}(2(\sqrt{S_n} - \sqrt{n}) \le x) = \mathbb{P}\left(\sqrt{S_n} \le \sqrt{n} + \frac{x}{2}\right).$$

Note that $S_n \ge 0$, so there is no problem with the square root and for every x the right hand side of the inequality $\sqrt{S_n} \le \sqrt{n} + \frac{x}{2}$ is positive for big enough n, so it holds if and only if $S_n \le \left(\sqrt{n} + \frac{x}{2}\right)^2$. So, for n big enough, using $\mathbb{E}S_n = n$,

$$F_n(x) = \mathbb{P}\left(S_n \le n + \sqrt{nx} + \frac{x^2}{4}\right) = \mathbb{P}\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{n}} \le x + \frac{x^2}{4\sqrt{n}}\right).$$

As $n \to \infty$, this converges to $\Phi\left(\frac{x}{\sigma}\right)$ (where Φ is the standard normal distribution function), because $\frac{S_n - \mathbb{E}S_n}{\sqrt{n}}$ converges weakly to $\mathcal{N}(0, \sigma^2) = \sigma \chi$ (by the C.L.T.) and $\frac{x^2}{4\sqrt{n}} \to 0$. This is what we had to show.

(The $\frac{x^2}{4\sqrt{n}} \to 0$ term can be treated rigorously using the continuity of the normal distribution function and some ε -ing, or looking at the limit and lim sup separately.)

Solution 2: Invented by clever students. More elegant, more tricky and one needs to know more. Write the random variable under study in the tricky form

$$2(\sqrt{S_n} - \sqrt{n}) = \frac{2}{\sqrt{\frac{S_n}{n} + 1}} \frac{S_n - n}{\sqrt{n}}.$$

The second factor converges to $\sigma\chi$ by the C.L.T., and the $\frac{S_n}{n}$ under the square root converges weakly to $\mathbb{E}X_k = 1$ by the weak law of large numbers. So Theorem 3.2.4 in Durrett [1] gives that the first factor converges weakly to 1 (because the map $x \mapsto \frac{2}{\sqrt{x+1}}$ is continuous in 1), and consequently Exercise 3.2.14 from Durrett [1] gives that the product converges weakly to $\sigma\chi$ as well.

- 5.4 Durrett [1], Exercise 3.4.5
- 5.5 (homework) Durrett [1], Exercise 3.6.1

Solution:

- (i) We check the defining properties of a metric. Let μ , ν and ρ be any probability measures on \mathbb{Z} . For $z \in \mathbb{Z}$, we abuse notation and write $\mu(z) = \mu(\{z\})$, just like Durrett.
 - $d(\mu, \nu) \ge 0$ clearly from the definition.
 - $d(\mu, \nu) = d(\nu, \mu)$ clearly from the definition.
 - If $d(\mu, \nu) = 0$, then for every $A \subset \mathbb{Z}$ we have $|\mu(A) \nu(A)| = 0$ meaning $\mu(A) = \nu(A)$, so $\mu = \nu$.
 - •

$$d(\mu,\nu) = \frac{1}{2} \sum_{z \in \mathbb{Z}} |\mu(z) - \rho(z) + \rho(z) - \nu(z)|$$

$$\leq \frac{1}{2} \sum_{z \in \mathbb{Z}} (|\mu(z) - \rho(z)| + |\rho(z) - \nu(z)|) = d(\mu,\rho) + d(\rho,\nu).$$

(ii) One direction is easy: for every $x \in \mathbb{Z}$ we have $|\mu_n(x) - \mu(x)| \leq 2||\mu_n - \mu||$, so if $||\mu_n - \mu|| \to 0$, then $\mu_n(x) \to \mu(x)$.

For the other direction we need to work. Suppose that $\mu_n(x) \to \mu(x)$ for every $x \in \mathbb{Z}$. Then for every $\varepsilon > 0$ one can take $A \subset \mathbb{Z}$ big enough but still *finite* such that $\mu(\mathbb{Z} \setminus A) < \frac{\varepsilon}{2}$. Set $K := |A| < \infty$. We will treat the points inside A one by one, and those outside A together. Now take n_0 so big that $|\mu_n(x) - \mu(x)| < \frac{\varepsilon}{2K}$ for every $n \ge n_0$ and every $x \in A$. (This is possible because A is finite.) This implies that $|\mu_n(A) - \mu(A)| < \frac{\varepsilon}{2}$, so $|\mu_n(\mathbb{Z} \setminus A) - \mu(\mathbb{Z} \setminus A)| = |\mu_n(A) - \mu(A)| < \frac{\varepsilon}{2}$ as well. With the definition of A this gives $\mu_n(\mathbb{Z} \setminus A) < \varepsilon$ for every $n \ge n_0$. Now

$$\begin{aligned} ||\mu_n - \mu|| &= \frac{1}{2} \sum_{x \in A} |\mu_n(x) - \mu(x)| + \frac{1}{2} \sum_{x \in \mathbb{Z} \setminus A} |\mu_n(x) - \mu(x)| \\ &\leq \frac{1}{2} \sum_{x \in A} \frac{\varepsilon}{2K} + \frac{1}{2} \sum_{x \in \mathbb{Z} \setminus A} (\mu_n(x) + \mu(x)) = \frac{1}{2} K \frac{\varepsilon}{2K} + \frac{1}{2} \mu_n(\mathbb{Z} \setminus A) + \frac{1}{2} \mu(\mathbb{Z} \setminus A) \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon. \end{aligned}$$

5.6 Durrett [1], Exercise 3.6.2

References

[1] Durrett, R. Probability: Theory and Examples. Cambridge University Press (2010)