Homework sheet 5 - solutions

5.1 (homework) Let X_{1}, X_{2}, \ldots be i.i.d. random variables with density (w.r.t. Lebesgue measure) $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$. (So they have the Cauchy distribution.) Find the weak limit (as $n \rightarrow \infty$) of the average

$$
\frac{X_{1}+\cdots+X_{n}}{n} .
$$

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is using characteristic functions. Calculating the characteristic function of the Cauchy distribution is a little tricky, but you can look it up.
Solution: The characteristic function of the Cauchy distribution is $\psi_{X_{k}}(t)=e^{-|t|}$ (see e.g. Durrett [1], Example 3.3.9). So $S_{n}=X_{1}+\cdots+X_{n}$ has characteristic function $\psi_{S_{n}}(t)=$ $\left(\psi_{X_{k}}(t)\right)^{n}=e^{-n|t|}$ and $\frac{S_{n}}{n}$ has characteristic function $\psi_{\frac{S_{n}}{n}}(t)=\psi_{S_{n}}\left(\frac{t}{n}\right)=e^{-|t|}$. This means that $\frac{S_{n}}{n}$ has the same Cauchy distribution as the X_{k} for every n, so it also converges to the Cauchy distribution weakly.
Note that this does not contradict the weak law of large numbers, because our X_{k} do not have an expectation.

5.2 Durrett [1], Exercise 3.3.20

5.3 (homework) Durrett [1], Exercise 3.4.4

Solution 1: My solution, no trickery. We calculate the limiting distribution function:

$$
F_{n}(x):=\mathbb{P}\left(2\left(\sqrt{S_{n}}-\sqrt{n}\right) \leq x\right)=\mathbb{P}\left(\sqrt{S_{n}} \leq \sqrt{n}+\frac{x}{2}\right)
$$

Note that $S_{n} \geq 0$, so there is no problem with the square root and for every x the right hand side of the inequality $\sqrt{S_{n}} \leq \sqrt{n}+\frac{x}{2}$ is positive for big enough n, so it holds if and only if $S_{n} \leq\left(\sqrt{n}+\frac{x}{2}\right)^{2}$. So, for n big enough, using $\mathbb{E} S_{n}=n$,

$$
F_{n}(x)=\mathbb{P}\left(S_{n} \leq n+\sqrt{n} x+\frac{x^{2}}{4}\right)=\mathbb{P}\left(\frac{S_{n}-\mathbb{E} S_{n}}{\sqrt{n}} \leq x+\frac{x^{2}}{4 \sqrt{n}}\right)
$$

As $n \rightarrow \infty$, this converges to $\Phi\left(\frac{x}{\sigma}\right)$ (where Φ is the standard normal distribution function), because $\frac{S_{n}-\mathbb{E} S_{n}}{\sqrt{n}}$ converges weakly to $\mathcal{N}\left(0, \sigma^{2}\right)=\sigma \chi$ (by the C.L.T.) and $\frac{x^{2}}{4 \sqrt{n}} \rightarrow 0$. This is what we had to show.
(The $\frac{x^{2}}{4 \sqrt{n}} \rightarrow 0$ term can be treated rigorously using the continuity of the normal distribution function and some ε-ing, or looking at the liminf and limsup separately.)
Solution 2: Invented by clever students. More elegant, more tricky and one needs to know more. Write the random variable under study in the tricky form

$$
2\left(\sqrt{S_{n}}-\sqrt{n}\right)=\frac{2}{\sqrt{\frac{S_{n}}{n}}+1} \frac{S_{n}-n}{\sqrt{n}} .
$$

The second factor converges to $\sigma \chi$ by the C.L.T., and the $\frac{S_{n}}{n}$ under the square root converges weakly to $\mathbb{E} X_{k}=1$ by the weak law of large numbers. So Theorem 3.2.4 in Durrett [1] gives
that the first factor converges weakly to 1 (because the map $x \mapsto \frac{2}{\sqrt{x}+1}$ is continuous in 1), and consequently Exercise 3.2 .14 from Durrett [1] gives that the product converges weakly to $\sigma \chi$ as well.
5.4 Durrett [1], Exercise 3.4.5
5.5 (homework) Durrett [1], Exercise 3.6.1

Solution:

(i) We check the defining properties of a metric. Let μ, ν and ρ be any probability measures on \mathbb{Z}. For $z \in \mathbb{Z}$, we abuse notation and write $\mu(z)=\mu(\{z\})$, just like Durrett.

- $d(\mu, \nu) \geq 0$ clearly from the definition.
- $d(\mu, \nu)=d(\nu, \mu)$ clearly from the definition.
- If $d(\mu, \nu)=0$, then for every $A \subset \mathbb{Z}$ we have $|\mu(A)-\nu(A)|=0$ meaning $\mu(A)=\nu(A)$, so $\mu=\nu$.

$$
\begin{aligned}
d(\mu, \nu) & =\frac{1}{2} \sum_{z \in \mathbb{Z}}|\mu(z)-\rho(z)+\rho(z)-\nu(z)| \\
& \leq \frac{1}{2} \sum_{z \in \mathbb{Z}}(|\mu(z)-\rho(z)|+|\rho(z)-\nu(z)|)=d(\mu, \rho)+d(\rho, \nu) .
\end{aligned}
$$

(ii) One direction is easy: for every $x \in \mathbb{Z}$ we have $\left|\mu_{n}(x)-\mu(x)\right| \leq 2\left\|\mu_{n}-\mu\right\|$, so if $\left\|\mu_{n}-\mu\right\| \rightarrow 0$, then $\mu_{n}(x) \rightarrow \mu(x)$.
For the other direction we need to work. Suppose that $\mu_{n}(x) \rightarrow \mu(x)$ for every $x \in \mathbb{Z}$. Then for every $\varepsilon>0$ one can take $A \subset \mathbb{Z}$ big enough but still finite such that $\mu(\mathbb{Z} \backslash A)<\frac{\varepsilon}{2}$. Set $K:=|A|<\infty$. We will treat the points inside A one by one, and those outside A together. Now take n_{0} so big that $\left|\mu_{n}(x)-\mu(x)\right|<\frac{\varepsilon}{2 K}$ for every $n \geq n_{0}$ and every $x \in A$. (This is possible because A is finite.) This implies that $\left|\mu_{n}(A)-\mu(A)\right|<\frac{\varepsilon}{2}$, so $\left|\mu_{n}(\mathbb{Z} \backslash A)-\mu(\mathbb{Z} \backslash A)\right|=\left|\mu_{n}(A)-\mu(A)\right|<\frac{\varepsilon}{2}$ as well. With the definition of A this gives $\mu_{n}(\mathbb{Z} \backslash A)<\varepsilon$ for every $n \geq n_{0}$. Now

$$
\begin{aligned}
\left\|\mu_{n}-\mu\right\| & =\frac{1}{2} \sum_{x \in A}\left|\mu_{n}(x)-\mu(x)\right|+\frac{1}{2} \sum_{x \in \mathbb{Z} \backslash A}\left|\mu_{n}(x)-\mu(x)\right| \\
& \leq \frac{1}{2} \sum_{x \in A} \frac{\varepsilon}{2 K}+\frac{1}{2} \sum_{x \in \mathbb{Z} \backslash A}\left(\mu_{n}(x)+\mu(x)\right)=\frac{1}{2} K \frac{\varepsilon}{2 K}+\frac{1}{2} \mu_{n}(\mathbb{Z} \backslash A)+\frac{1}{2} \mu(\mathbb{Z} \backslash A) \\
& \leq \frac{\varepsilon}{4}+\frac{\varepsilon}{2}+\frac{\varepsilon}{4}=\varepsilon .
\end{aligned}
$$

5.6 Durrett [1], Exercise 3.6.2

References

[1] Durrett, R. Probability: Theory and Examples. Cambridge University Press (2010)

