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Introduction

Nothing of the material presented is my own result. In fact, it is by now
considered “classical” or “standard knowledge” in Mathematics, and I will
not attempt to give references to the original papers of the true authors.
Instead, I will (when I get to it) cite some textbooks and lecture notes where
the material is easily accessible, and which I myself use to reduce the number
of false statements written.
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1 Probability warming-up

1.1 Measure, measure space, probability, probability

space

Definition 1.1 (σ-algebra). For a nonempty set Ω, a family F of subsets of
ω (i.e. F ⊂ 2Ω, where 2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a
σ-algebra over Ω if

• ∅ ∈ F

• if A ∈ F , then AC := Ω\A ∈ F (that is, F is closed under complement
taking)

• if A1, A2, · · · ∈ F , then (∪∞
i=1Ai) ∈ F (that is, F is closed under count-

able union).

Definition 1.2 (measurable space, measurable set). If Ω is a nonempty set
and F is a σ-algebra over Ω, then the pair (Ω,F) is called a measurable
space. The elements of F arer called measurable subsets of Ω.

Lemma 1.3. A σ-algerba is closed under finite intersection, countable union
and finite union.

Proof. Homework.

Note that a σ-algebra is in general not closed under arbitrary intersection
and union. For example, the Borel σ-algebra on the set R of real numbers
(see later) contains every 1-element subset of R, but it does not contain every
subset (a fact we will not prove).

Two trivial examples of σ-algebra:

Definition 1.4 (indiscrete σ-algebra). For a nonempty set Ω, the family of
subsets Find = {∅,Ω} is called the indiscrete or trivial σ-algebra over Ω.

Definition 1.5 (discrete σ-algebra). For a nonempty set Ω, the family of
subsets Fdiscr = 2Ω (the entire power set) is called the discrete σ-algebra over
Ω.

It is immediate from the definition that these are indeed σ-algebras over
Ω.

Lemma 1.6. The intersection of any (nonempty) family of σ-algebras over
the same Ω is also a σ-algerba over Ω. That is, if Ω is a nonempty set and
Fi is a σ-algerba over Ω for every i ∈ I where I is any nonempty index set,
then F := ∩i∈IFi is also a σ-algebra over Ω.
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Proof. (trivial set algebra) By definition, ∅ ∈ Fi for every i ∈ I, and I is
nonempty, so ∅ ∈ ∩i∈IFi = F . Similarly, if A ∈ F = ∩i∈IFi, then A ∈ Fi for
every i ∈ I, so by definition Ω\A ∈ Fi for every i ∈ I, so Ω\A ∈ F . Finally,
if A1, A2, · · · ∈ F , then A1, A2, · · · ∈ Fi for every i ∈ I, so by definition
(∪∞

k=1Ak) ∈ Fi for every i ∈ I, which means that (∪∞
k=1Ak) ∈ F .

It is important to note that I being any nonempty set means in particular
that it can well be a large set, having infinitely many, or even uncountably
many, or possibly much more elements.

Corollary 1.7. If Ω is a nonempty set and H ⊂ 2Ω is any family of subsets,
then there exists a unique σ-algebra σ(H) over Ω, which is the smallest σ-
algebra containig H in the following sense:

• H ⊂ σ(H)

• If F is any σ-algebra over Ω with H ⊂ F , then F ⊂ σ(H).

Proof. The family

{F : F is a σ-algebra over Ω and H ⊂ F}

is nonempty, since it contains at least the discrete σ-algebra 2Ω. Thus by the
above lemma,

σ(H) := ∩{F : F is a σ-algebra over Ω and H ⊂ F}

will do. Uniqueness also follows from the lemma: if there were two diferent
such minimal σ-algebras, their intersection would also be a σ-algebra, but it
would not contain them – a contradiction.

Definition 1.8 (σ-algebra generated by a family of sets). The above σ(H)
is called the σ-algebra generated by H.

Definition 1.9 (Borel σ-algebra). If (Ω, T ) is a topological space (which
means that it makes sense to talk about open subsets of Ω, and T is the set
of these open subsets), then B(Ω) := σ(T ) is called the Borel σ-algebra on Ω.

Remark 1.10. The set T is called the topology, so the Borel σ-algebra is
the σ-algebra generated by the topology. For those, who haven’t heard, but
are interested: A collection T ⊂ 2Ω of subsets of Ω is called (by definition) a
topology over Ω if it contains ∅ and Ω, and it is closed under finite intersec-
tion and arbitrary union. Then the elements of T are called open sets, and
the pair (Ω, T ) is called a topological space. (So the definition only says that
∅ and Ω are open, the intersection of finitely many open set is open, and that
the union of any family of open sets is open.)
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When we talk about the Borel sets on R or Rn, we always think of the
usual notion of open sets on these spaces.

Remark 1.11. Not every subset of [0, 1] is Borel. In fact, a non-Borel subset
can be constructed (and not only the existence can be proven). We don’t go
into that.

Notation 1.12. We denote by R+ the set of nonnegative real numbers – that
is, R+ = [0,∞). In particular, R+ includes zero.

Definition 1.13 (measure space, measure). Let (Ω,F) be a measurable
space. The nonnegative extended real valued function µ on F (that is, µ :
F → R+ ∪ {∞}) is called a measure on Ω, if

• µ(∅) = 0,

• µ is σ-additive, meaning that if {Ai}i∈I is a countable family of pairwise
disjoint measureable sets (with formulas: Ai ∈ F for every i ∈ I where
I is a countable index set, and Ai ∩ Aj = ∅ for every i 6= j, i, j ∈ I),
then

µ (∪i∈IAi) =
∑

i∈I

µ(Ai).

Then the triple (Ω,F , µ) is called a measure space and µ(A) is called the
measure of the set A.

Remark 1.14. It is absolutely important that in the definition of σ-additivity
I is countably infinite: σ-additivity is more than finite additivity and less
than arbitrary additivity. For example, if µ is the Lebesgue measure on R
(see later), every 1-element set {x} has µ({x}) = 0, which implies that every
countable set has zero measure, but of course

1 = µ([0, 1]) = µ(∩x∈[0,1]{x}) 6=
∑

x∈[0,1]

µ({0}) =
∑

x∈[0,1]

0 = 0.

(Whatever the sum of uncountably many real numbers could mean.)

Once it came up, we mention the following, absolutely non-important
definition:

Definition 1.15 (sum of many nonnegative extended real numbers). If ai ∈
R+ ∪ {∞} for every i ∈ I where I is any index set, then we define the sum
of all ai as

∑

i∈I

ai := sup

{

∑

i∈J

ai : J ⊂ I and J is finite

}

.
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Note that it is important that the ai are nonnegative. This definition
obviously coincides with the usual sum of (an arbitrarily reorderable) series
if I is countable. This new notion of an infinite sum is no serious extention
of the well known notion of a countable series: it is easy to see that if the
sum is finite, then at most countably many terms can be nonzero.

Remark 1.16. In the definition of the measure, the first requirement µ(∅) =
0 is almost automatic from σ-additivity: it’s only there to rule out the trivial
nonsense µ(∅) = ∞. In fact it would be enough to require that at least one
measurable set A has finite measure: σ-additivity implies

µ(A) = µ(A∪∅∪∅∪∅∪. . . ) = µ(A)+µ(∅)+µ(∅)+µ(∅)+· · ·= µ(A)+
∞
∑

i=1

µ(∅).

If µ(A) < ∞, then this implies 0 =
∑∞

i=1 µ(∅), so µ(∅) = 0.

Definition 1.17. The measure χ on a nonempty set Ω equipped with the
discrete σ-algebra 2Ω defined as

χ(A) := ♯A :=

{

number of elements in A, if A is finite

∞, if A is infinite

is called the counting measure on Ω. The restriction of χ to any σ-algebra
F ⊂ 2Ω is still called a counting measure (on F).

One of the most important examples of a measure is the Lebesgue measure
on R or on Rd

Definition 1.18 (Lebesgue measure vaguely). Consider the set R with the
Borel σ-algebra B. The measure Leb : B → R+ ∪ {∞} is called the Lebesgue
measure on R, if it assigns to every interval its length – that is, for every
a, b ∈ R, a ≤ b we have

Leb((a, b)) = Leb((a, b]) = Leb([a, b)) = Leb([a, b]) = b− a.

The restriction of Leb to a Borel subset of R (e.g. an interval [c, d] or (c,∞))
is still called Lebesgue measure and is still denoted by Leb. (More precisely,
if (R,B,Leb) is the Lebesgue measure space on R, and I ∈ B, than one can
define the “restriction of Leb to I” as the measure space (I,BI ,LebI) where
BI := {A ∩ I : A ∈ B} = {B : B ∈ B, B ⊂ I} ⊂ B and LebI := Leb|BI

is
the restriction of Leb to BI .)
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Similarly, the “Lebesgue measure on Rd” is the measure on Borel subsets
of Rd which assigns to every box its d-dimensional volume, i.e. for every
a1 ≤ b1, a2 ≤ b2, . . . ad ≤ bd ∈ R we have

Lebd([a1, b1]× [a2, b2]× · · · × [ad, bd]) =

d
∏

i=1

(bi − ai).

Restrictions to Borel subsets of Rd are still called Lebesgue measure, and
denoted by Lebd or just Leb.

Remark 1.19. The above “definition” of the Lebesgue measure is far from
being complete, and is not the usual definition – it’s actually a characteriza-
tion of the Lebesgue measure which shows its essence. It can be (and needs
to be) shown that such a measure indeed exists, since in the “definition” we
only gave the value of Leb for a few very special sets, and not every Borel set.
Also uniqueness can and needs to be shown. These questions lead to the con-
struction of measures based on their pre-known values on certain pre-chosen
“to-be-measurable” sets, which can sometimes be of crucial importance, but
we don’t go into that here.

Remark 1.20. In the measure theory literature, Lebesgue measure is defined
on a σ-algerba F which is larger than the Borel σ-algebra (i.e. B $ F), called
the “set of Lebesgue measurable sets”. In particular, F has the property that
if B ∈ F , Leb(B) = 0 and A ⊂ B, then A ∈ F , which is not true for Borel
sets. However, in probability theory it is usual to consider Lebesgue measure
restricted to Borel sets only (as in the above definition).

The following definition shows that the basic object of probability theory,
called “the probability” is in fact a measure.

Definition 1.21 (Kolmogorov probability space). The triple (Ω,F ,P) is
called a Kolmogorov probability space (or just probability space) if it is a
measure space and P(Ω) = 1. Then P is called the probability or a “proba-
bility measure”, elements of F are called events, and elements of Ω are the
elementary events. For A ∈ F , P(A) ∈ [0, 1] is called the probability of the
event A.

Picture ω ∈ Ω as possible outcomes of an experiment, so an event A ∈ F
often consists of many possible outcomes of that experiment, which have
some common property that we are interested in. By definition, an “event”
is something which has a probability.
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1.2 Measurable functions, random variables and their

distributions

Notation 1.22. For a function f : Ω → Ω′ and a set A′ ⊂ Ω′, let f−1(A′)
denote, as usual, the complete inverse image of A′ defined as f−1(A′) :=
{ω ∈ Ω : f(ω) ∈ A′}. Note that this makes sense for any function and any
A′ – in particular, f need not be invertable.

Definition 1.23 (measureable function, observable, random variable). Let
(Ω,F) and (Ω′,F ′) be measurable spaces. The function X : Ω → Ω′ is called
measurable or (F ,F ′)-measurable, if for every A′ ∈ F ′ we have X−1(A′) ∈
F . (That is, if the inverse image of any measurable set is also measurable.)
In physical applications, when Ω is the (possibly complicated) phase space of
a system and Ω′ is a (usually simple) set of possible measurement results (e.g.
Ω′ = R), the same X is called an observable. In the context of probability
theory, when (Ω,F ,P) is a probability space, X is called a (Ω′-valued) random
variable.

Note that the notion of measurability of a function depends on the choice
of the σ-algebras F and F ′. However, in many cases when this choice is
clear from the context, we simply say “measurable” instead of “(F ,F ′)-
measurable”. When we talk about a random variable, and do not specify the
range, usually (Ω′,F ′) = (R,B) is understood.

Remark 1.24. If X : Ω → Ω′ is a random variable and x ∈ Ω′, then we
denote by {X = x} the set of elementary events where X takes the value x –
that is,

{X = x} := {ω ∈ Ω : X(ω) = x} = X−1({x}).

Similarly, if A′ ⊂ Ω′, then {X ∈ A′} denotes the set of elementary events
where X takes values in A′:

{X ∈ A′} := {ω ∈ Ω : X(ω) ∈ A′} = X−1(A).

With this in mind, the definition of a random variable as a measurable func-
tion is very natural. The definition says exactly that is A′ is a measurable
subset of the range Ω′, then the set {X ∈ A} is indeed an event – that is, it
makes sense to talk about its probability.

Example 1.25. coordinate, number rolled, sum of these

Random variables are the central objects of study in probability theory. In
a typical situation they extract fairly little information (e.g. a single number)
from a big probability space containing many complicated possible outcomes
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of an experiment. So to “understand” a random variable X : Ω → Ω′ on
the probability space (Ω,F ,P) well, we need less information than the what
P and X contain. From another point of view: when we consider a random
variable, Ω is often not needed, or not even known. All we need to know is the
possible values (in Ω′) X can take, and the probability of these being taken.
This information is contained exactly in a measure on Ω′, as the following
definition shows.

Definition 1.26 (distribution of a random variable). Let (Ω,F ,P) be a prob-
ability space, (Ω′,F ′) a measurable space and X : Ω → Ω′ a random variable.
Then the distribution of X is the measure µ on (Ω′,F ′) which is defined as

µ(A) := P({X ∈ A}) = P(X−1(A)) for every A ∈ F ′.

This can be written in short as

µ := P ◦X−1.

µ is nothing else than the “push-forward” of the probability P by X to Ω′.

In the special case when Ω′ = R and X is discrete (meaning that it can
take finitely many, or at most countably many values), there is a convenient
alternative way to “desribe the distribution of X”, by simply listing the
possible values xk and their probabilities pk := P(X = xk) := P({X = xk}).
Then the information contained in the sequence of pairs {(xk, pk)}

N
k=1 (with

possibly N = ∞) is called the discrete probability distribution. Having this
information, one can calculate probabilities of events by summation:

µ(A) = P({X ∈ A}) =
∑

k:xk∈A

pk.

Similarly, in the special case when Ω′ = R and X is absolutely continuous
(see later), there is convenient alternative “description of the distribution”
by a density function f : R → R+ from which one can calculate probabilities
of events by integration:

µ(A) = P({X ∈ A}) =

∫

A

f(x) dx.

The above notion of a probability distribution is a far-reaching general-
ization of both notions.

Example 1.27. sum of two rolled numbers real number generated by a se-
quence of fair coin tosses real number generated by a sequence of biased coin
tosses
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1.3 Integral and expectation

1.3.1 Integral, integrability

For an (extended) real-valued measurable functions X : Ω → R on a measure
space (Ω,F , µ) it makes sense to talk about the integral

∫

Ω
X dµ. This is

an essential tool, and also an important object of study both in measure
theory and in probability theory. We don’t go deep into the definition and
properties of the integral here – we don’t want to, and we can’t substitute
a measure theory course now. I just give very briefly one of the shortest
possible definitions, and point out a few main feaures.

Since we don’t want to exclude the case when either a function or a
measure takes the value ∞, we work with extended real numbers, and use
the convention

0 · ∞ := ∞ · 0 := 0.

We start by defining the integral of nonnegative functions.

Definition 1.28 (integral of non-negative extended real valued functions).
If (Ω,F , µ) is a measure space and X : Ω → R+ ∪ {∞} is measurable, we
introduce a sequence Xn : Ω → R+ of simple functions (i.e. taking only
finitely many values) which approximate X (from below) as

Xn(ω) := max{x ∈ {0,
1

2n
,
2

2n
, . . . , 2n −

1

2n
, 2n} : x ≤ X(ω)}.

Than we define the n-th integral-approximating sum as

In :=
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

xµ(X−1
n ({x})),

and the integral of X as

∫

Ω

X dµ := lim
n→∞

In.

The sets X−1
n ({x}) ⊂ Ω in the definition of In are ensured to be F -

measurable by the assumption that X is measurable (and the fact that {x}
is Borel-measurable in R), so µ(X−1

n ({x})) makes sense. The sequence Xn

of functions is cleverly defined to be increasing, and so is the sequence In, so
the limit in the above definition exists, but is possibly infinite.

We can now go on to the general definition of the integral for extended
real valued functions:
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Definition 1.29 (integral). If (Ω,F , µ) is a measure space and X : Ω → R∪
{−∞,∞} is measurable, we introduce the positive part X+ and the negative
part X− of X as

X+(ω) :=

{

X(ω), if X(ω) > 0,

0, if not
, X−(ω) :=

{

−X(ω), if X(ω) < 0,

0, if not
.

Note that both X+ and X− are nonnegative and X = X+ −X−.
Now

• If either
∫

Ω
X+ dµ < ∞ or

∫

Ω
X− dµ < ∞, then we define the integral

of X as
∫

Ω

X dµ :=

∫

Ω

X+ dµ−

∫

Ω

X− dµ,

which can possibly be ∞ or −∞.

• If both
∫

Ω
X+ dµ = ∞ and

∫

Ω
X− dµ = ∞, then we say that the integral

of X doesn’t exist (or that it is undefined).

In the usual mathematical language, there is an important distinction
between the existence of an integral and the integrability of a function. We
emphasize this in the following definition:

Definition 1.30 (integrability). Let (Ω,F , µ) be a measure space and X :
Ω → R∪{−∞,∞} measurable. If the integral

∫

Ω
X dµ exists and it is finite,

then we say that X is integrable (with respect to µ).

So integrability of X means −∞ <
∫

Ω
X dµ < ∞, which is equivalent to

both
∫

Ω
X+ dµ and

∫

Ω
X− dµ being finite.

Remark 1.31 (comparison to the Riemann integral). The above definition
of the integral is similar to the construction of the good old Riemann integral:
in both cases the domain of integration, Ω, is chopped up into pieces, on each
of which the function X takes nearly constant values. Than the “size” of
each piece is multiplied by the approximate value of the function there, and
these products are added up to obtain an integral approximating sum. The
crucial difference is that in the case of Riemann integral, these small pieces
of Ω had to be intervals, while here they can be any measurable subset of Ω.
In particular, the points in X−1

n ({x}) don’t need to be “close” to each other
in any sense, thus Ω absolutely doesn’t need to be the real line or anything
similar. It doesn’t need to have any additional structure that would give sense
to the words “distance” or “being close”. Really, any measure space will do.
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A trivial but important example of integrable functions:

Lemma 1.32 (bounded functions on finite measure spaces are integrable). If
(Ω,F , µ) is a finite measure space (meaning that µ(Ω) < ∞) and X : Ω → R
is measurable and bounded – meaning that there exists an M ∈ R such that
−M ≤ X(ω) ≤ M for every ω ∈ Ω, then X is integrable w.r.t. µ.

Proof. X being bounded by M implies that 0 ≤ X+(ω), X−(ω) ≤ M . when
calculating the integral of, say, X+, we have Xn(ω) ≤ X+(ω) ≤ M , and thus

In :=
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

xµ(X−1
n ({x}))

≤ M
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

µ(X−1
n ({x}))

= Mµ(∪x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}X

−1
n ({x}))

= Mµ(Ω).

So we get
∫

Ω
X+ dµ < Mµ(Ω). Similarly,

∫

Ω
X− dµ < Mµ(Ω), so

−∞ < −Mµ(Ω) ≤

∫

Ω

X dµ ≤ Mµ(Ω) < ∞.

A basic property of the integral with a huge importance is linearity in the
function integrated (the integrand):

Theorem 1.33 (linearity of integrability and the integral). Let X1 and X2

be real valued measurable functions on the same probability space (Ω,F , µ),
and let α1, α2 ∈ R. If both I1 :=

∫

Ω
X1 dµ and I2 :=

∫

Ω
X2 dµ exist and

α1I1 + α2I2 is not of the form ∞−∞, then
∫

Ω
(α1X1 + α2X2) dµ exists and

∫

Ω

(α1X1 + α2X2) dµ = α1

∫

Ω

X1 dµ+ α2

∫

Ω

X2 dµ.

As a consequence, if X1 and X2 are both integrable, then so is α1X1+α2X2.

The proof is easy from the definition, but we don’t discuss it here. See
any measure theory book. It is useful to note that the integral is linear not
only in the integral, but also in the measure:
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Theorem 1.34 (linearity of the integral II.). Let (Ω,F) be a measurable
space, µ1 and µ2 measures on it, X a real valued measurable function and 0 ≤
α1, α2 ∈ R. If both I1 :=

∫

Ω
X dµ1 and I2 :=

∫

Ω
X dµ2 exist and α1I1 + α2I2

is not of the form ∞−∞, then
∫

Ω
X d(α1µ1 + α2µ2) exists and

∫

Ω

X d(α1µ1 + α2µ2) = α1

∫

Ω

X dµ1 + α2

∫

Ω

X dµ2.

As a consequence, if X is integrable w.r.t. both µ1 and µ2, then so it is w.r.t.
α1µ1 + α2µ2.

Remark 1.35 (bilinearity of the integral). In the last theorem, we required
that α1 and α2 be nonnegative – otherwise α1µ1+α2µ2 may not be a measure,
since in our definition a measure has to be nonnegative. For the same reason,
the measures on a measurable space do not form a linear space. In functional
analysis, to overcome that limitation, it is common to introduce the notion
of “signed measures” (say, as a difference of two measures), which already
form a linear space (with the usual notion of addition and multiplication).
Then the two-variable real-valued mapping

〈µ,X〉 :=

∫

X dµ

can be defined on suitably chosen linear spaces of measures and functions
(e.g. µ ∈ {signed finite measures}, X ∈ {bounded measurable functions}.)
The above two theorems show that this mapping is bilinear, which is the
property where functional analysis starts.

1.3.2 Exchanging limits with integrals

It is utmost important that Theorem 1.33 is about the linear combination
of two integrable functions. Of course, it immediately implies linearity of
the integral for finite linear combinations, but does not say anything about
infinite sums. Indeed, linearity of the integral for infinite sums is not at all
true in general. In fact, it is an important issue, in which cases exchanging
an integral with a limit is possible – one has to be at least always careful. In
the following we state (without proof) three theorems, which are the most
frequently (and almost exclusively) used tools in checking exchangeability.
In a situation where none of them works, exchangeability is usually hard to
prove, and may very well not be true.

The first and most used tool is the Lebesgue dominated convergence the-
orem:
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Theorem 1.36 (dominated convergence). Let (Ω,F , µ) be a measure space
and f1, f2, . . . measurable real valued functions on Ω which converge to the
limit function pointwise, µ-almost everywehere. (That is, limn→∞ fn(x) =
f(x) for every x ∈ Ω, except possibly for a set of x-es with µ-measure zero.)
Assume furthermore that the fn admit a common integrable dominating func-
tion: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ < ∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

As you see, it is enough to require “almost everywhere” convergence,
which is no surprise, since changing a function on a set of measure zero
doesn’t change the integral. In fact, it would be enough to require that
g dominates the fn almost everywhere – moreover, it would be enough to
require that the fn and g be extended real valued and defined almost every-
where. This is not a serious generalization, so I decided to rather keep the
formulation simple. In the literature usually the most general form is given.

The second and easiest tool is Beppo Levi’s monotone convergence theo-
rem:

Theorem 1.37 (monotone convergence). Let (Ω,F , µ) be a measure space
and f1, f2, . . . a sequence of measurable nonnegative real valued functions
on Ω which is pointwise increasing. (That is, 0 ≤ fn(x) ≤ fn+1(x) for
every n ∈ N and x ∈ Ω.) Then the pointwise limit function f defined by
f(x) := limn→∞ fn(x) is also measurable and

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

The third and trickiest tool is the Fatou lemma:

Theorem 1.38 (Fatou lemma). Let (Ω,F , µ) be a measure space and f1, f2,
. . . a sequence of measureabale functions fn : Ω → R, which are nonneagtive,
e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Definition 1.39 (Absolute continuity of measures, singularity of measures).
Let µ and ν be two measures on the same measurable space Ω,F . We say
that ν is absolute continuous with respect to µ (notation: ν ≪ µ) if for every
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A ∈ F for which µ(A) = 0, also ν(A) = 0. We say that ν and µ are singular
(with respect to each other) (notation: ν ⊥ µ) if there exists and A ∈ F for
which ν(A) = 0 and µ(Ω \ A) = 0.

The best known probability distributions are all examples of either one or
the other of these: the “discrete” probability distributions are singular w.r.t.
Lebesgue measurer on R, while the ones that are loosely called “continuous”
are actually absolutely continuous w.r.t. Lebesgue measurer on R.

Theorem 1.40 (Radon-Nykodim). If µ and ν are two measures on the same
measurable space Ω,F and ν ≪ µ, then there exists a measurable f : Ω → R,
called the density of ν w.r.t. µ, which satisfies ν(A) =

∫

A
f dµ.

absolute continuity w.r.t. counting measure
absolute continuity w.r.t. Lebesgue measure
integration w.r.t counting measure
integration w.r.t. Lebesgue measure
integration w.r.t. absolutely continouos measures
density function, distribution function
continuity of measures
expectation if it exists - real-valued - complex or Rd -valued - remark

about more complicated spaces
integration by substitution

Theorem 1.41. Let (Ω,F) and (Ω′,F ′) be measurable spaces, µ a measure
on Ω, X : Ω → Ω′ measurable and ν := µ ◦X−1 the push-forward of µ by X

(a measure on Ω′) (the distribution of X, if µ is a probability). Then for any
measurable g : Ω′ → R

∫

Ω

g(X) dµ =

∫

Ω′

g dν.

expectation of a distribution
linearity of expectation
variance, standard deviation
moments, centered moments, moment-generating function, characteristic

function
product measure space, product measure - be careful with infinite prod-

ucts
pairwise independence, marginal distributions
mutual independence
variance of linear combination of independent random variables
Markov inequality
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weak law of large numbers
central limit theorem
weak convergence of measures
weak convergence of random variables
continuity of the characteristic function
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