Probability 1
CEU Budapest, fall semester 2014
Imre Péter Tóth
Homework sheet 1 - due on 09.10.2014 - and exercises for practice

1. Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of Ω) is called $a \sigma$-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.
2. (homework) Let Ω be a nonempty set, let I be an arbitrary nonempty index set, and for every $i \in I$ let \mathcal{F}_{i} be a σ-algebra over Ω. (See the previous exercise for the definition.) Define \mathcal{G} as the intersection of all the σ-algebras \mathcal{F}_{i} :

$$
\mathcal{G}:=\left\{A \mid A \in \mathcal{F}_{i} \text { for all } i \in I\right\} .
$$

Show that \mathcal{G} is also a σ-algebra over Ω.
3. (homework) Continuity of the measure
(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
4. (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array} .\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter $p)$ in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distirbution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in B)$ of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.
5. In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ let $\Omega=[0,1]$, let \mathcal{F} be the Borel σ-algebra and let \mathbb{P} be the Lebesgue measure (restricted to \mathcal{F}). Let the random variable $X: \Omega \rightarrow \mathbb{R}$ be defined as

$$
X(\omega):=\left\{\begin{array}{l}
\ln \omega, \text { if } \omega \neq 0 \\
0, \text { if } \omega=0
\end{array}\right.
$$

(a) Show that X is measurable as a function $X: \Omega \rightarrow \mathbb{R}$ when Ω is equipped with the Borel σ-algebra \mathcal{F} and \mathbb{R} is also equipped with its Borel σ-algebra \mathcal{B}. (Remark: This exercise is only for those interested in every mathematical detail. It is not at all as important as it may seem. You are also welcome to just believe that X is measurable.)
(b) (homework) Let μ be the distribution of X, which means that μ is the measure on $(\mathbb{R}, \mathcal{B})$ defined by

$$
\mu(A):=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in A\}) \quad \text { for all } A \in \mathcal{B} .
$$

(In other words, μ is the push-forward of the measure \mathbb{P} to \mathbb{R} by X.)
"Describe" the measure μ by calculating $F(x):=\mu((-\infty, x])$ for every $x \in \mathbb{R}$. Also calculate $\mu([a, b])$ for every interval $[a, b] \subset \mathbb{R}$ (with $a \leq b$).
(This function $F: \mathbb{R} \rightarrow[0,1]$ is called the (cumulative) distribution function of the measure μ, or also the (cumulative) distribution function of the random variable X.)
6. The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1 . That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails, } \\
2, \text { if the } n \text {-th toss is heads }
\end{array}\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.

