Probability 1 CEU Budapest, fall semester 2014 Imre Péter Tóth Homework sheet 1 – due on 09.10.2014 – and exercises for practice

1. Define a σ -algebra as follows:

Definition 1 For a nonempty set Ω , a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega} := \{A : A \subset \Omega\}$ is the power set of Ω) is called a σ -algebra over Ω if

- $\bullet \ \emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^C := \Omega \setminus A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_1, A_2, \dots \in \mathcal{F}$, then $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ -algebra is closed under countable intersection, and under finite union and intersection.

2. (homework) Let Ω be a nonempty set, let I be an arbitrary *nonempty* index set, and for every $i \in I$ let \mathcal{F}_i be a σ -algebra over Ω . (See the previous exercise for the definition.) Define \mathcal{G} as the intersection of all the σ -algebras \mathcal{F}_i :

$$\mathcal{G} := \{A \mid A \in \mathcal{F}_i \text{ for all } i \in I\}.$$

Show that \mathcal{G} is also a σ -algebra over Ω .

- 3. (homework) Continuity of the measure
 - (a) Prove the following:

Theorem 1 (Continuity of the measure)

- i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_1, A_2, \ldots is an increasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \subset A_{i+1}$ for all i), then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_1, A_2, \ldots is a decreasing sequence of measurable sets (i.e. $A_i \in \mathcal{F}$ and $A_i \supset A_{i+1}$ for all i) and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$ (and both sides of the equation make sense).
- (b) Show that in the second statement the condition $\mu(A_1) < \infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
- 4. (a) We toss a biased coin, on which the probability of heads is some $0 \le p \le 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$\xi := \begin{cases} 0, \text{ if tails} \\ 1, \text{ if heads} \end{cases}$$

- i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
- ii. and also by describing the distirbution as a measure on \mathbb{R} , giving the weight $\mathbb{P}(\xi \in B)$ of every Borel subset B of \mathbb{R} .
- iii. Calculate the expectation of ξ .
- (b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

- i. Describe the distribution of X (called the Binomial distribution with parameters (n, p)) by listing possible values and their probabilities.
- ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
- iii. and also by noticing that $X = \xi_1 + \xi_2 + \cdots + \xi_n$, where ξ_i is the indicator of the *i*-th toss being heads, and using linearity of the expectation.
- 5. In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ let $\Omega = [0, 1]$, let \mathcal{F} be the Borel σ -algebra and let \mathbb{P} be the Lebesgue measure (restricted to \mathcal{F}). Let the random variable $X : \Omega \to \mathbb{R}$ be defined as

$$X(\omega) := \begin{cases} \ln \omega, \text{ if } \omega \neq 0\\ 0, \text{ if } \omega = 0 \end{cases}$$

- (a) Show that X is measurable as a function $X : \Omega \to \mathbb{R}$ when Ω is equipped with the Borel σ -algebra \mathcal{F} and \mathbb{R} is also equipped with its Borel σ -algebra \mathcal{B} . (Remark: This exercise is only for those interested in every mathematical detail. It is not at all as important as it may seem. You are also welcome to just believe that X is measurable.)
- (b) (homework) Let μ be the distribution of X, which means that μ is the measure on $(\mathbb{R}, \mathcal{B})$ defined by

$$\mu(A) := \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in A\}) \text{ for all } A \in \mathcal{B}.$$

(In other words, μ is the push-forward of the measure \mathbb{P} to \mathbb{R} by X.) "Describe" the measure μ by calculating $F(x) := \mu((-\infty, x])$ for every $x \in \mathbb{R}$. Also calculate $\mu([a, b])$ for every interval $[a, b] \subset \mathbb{R}$ (with $a \leq b$). (This function $F : \mathbb{R} \to [0, 1]$ is called the (cumulative) distribution function of the measure μ , or also the (cumulative) distribution function of the random variable X.)

6. The ternary number $0.a_1a_2a_3...$ is the analogue of the usual decimal fraction, but writing numbers in base 3. That is, for any sequence $a_1, a_2, a_3, ...$ with $a_n \in \{0, 1, 2\}$, by definition

$$0.a_1a_2a_3\cdots := \sum_{n=1}^{\infty} \frac{a_n}{3^n}.$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1. That is,

$$a_n := \begin{cases} 0, \text{ if the } n\text{-th toss is tails,} \\ 2, \text{ if the } n\text{-th toss is heads} \end{cases}$$

and setting $X = 0.a_1a_2a_3...$ (ternary). In this way, X is a "uniformly" chosen random point of the famous *middle-third Cantor set* C defined as

,

$$C := \left\{ \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \, a_n \in \{0, 2\} \, (n = 1, 2, \dots) \right\}.$$

Show that

- (a) The distribution of X gives zero weight to every point that is, $\mathbb{P}(X = x) = 0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
- (b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R} .