CEU Budapest, fall semester 2014

Imre Péter Tóth

Homework sheet 2 - due on 09.10.2014 - and exercises for practice

2.1 Let χ be the counting measure on \mathbb{N}. Calculate $\int_{\mathbb{N}} f \mathrm{~d} \chi$ if $f: \mathbb{N} \rightarrow \mathbb{R}$ is given by
a.) $f(k):=\frac{1}{2^{k}}$
b.) $f(k):=\frac{1}{k}$
c.) $f(k):=\frac{(-1)^{k}}{k}$
2.2 (homework) Let χ be the counting measure on \mathbb{N} and let the measure μ be absolutely continuous with respect to χ, with density $f(k):=q^{k} p$, where $p \in(0,1)$ and $q=1-p$. Define $X: \mathbb{N} \rightarrow \mathbb{R}$ as $X(k):=k$.
a.) Calculate $\int_{\mathbb{N}} X \mathrm{~d} \mu$.
b.) Calculate $\int_{\mathbb{N}} X^{2} \mathrm{~d} \mu$.
2.3 Let μ be a measure on \mathbb{R} which has density $f(x):=x^{2}$ with respect to Lebesgue measure. Let ν be a measure on \mathbb{R} which has density $g(x):=\sqrt{x}$ with respect to μ. Calculate $\nu([1,3])$.
2.4 (homework) Let the random variable X have density

$$
f(x)=\left\{\begin{array}{l}
2 e^{-2 x} \text { if } x>0 \\
0 \text { if not }
\end{array},\right.
$$

with respect to Lebesgue measure on \mathbb{R}.
a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.
b.) Let $Y:=X^{2}$. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and find its density.
2.5 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)

