Probability 1 CEU Budapest, fall semester 2014 Imre Péter Tóth Homework sheet 3 – due on 16.10.2014 – and exercises for practice

3.1 The Fatou lemma is the following

Theorem 1 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_1, f_2, \ldots a sequence of measureabale functions $f_n : \Omega \to \mathbb{R}$, which are nonneagtive, e.g. $f_n(x) \ge 0$ for every $n = 1, 2, \ldots$ and every $x \in \Omega$. Then

$$\int_{\Omega} \liminf_{n \to \infty} f_n(x) \, \mathrm{d}\mu(x) \le \liminf_{n \to \infty} \int_{\Omega} f_n(x) \, \mathrm{d}\mu(x)$$

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing $\Omega = \mathbb{N}$, μ as the counting measure χ on \mathbb{N} , and constructing a sequence of nonnegative $f_n : \mathbb{N} \to \mathbb{R}$ for which $f_n(i) \xrightarrow{n \to \infty} 0$ for every $i \in \mathbb{N}$, but $\int_{\mathbb{N}} f_n(i) d\chi(i) \ge 1$ for all n.

- 3.2 Calculate the characteristic function of
 - (a) (homework) The Bernoulli distribution B(p) (see Homework sheet 1)
 - (b) (homework) The "pessimistic geometric distribution with parameter p" that is, the distribution μ on $\{0, 1, 2...\}$ with weights $\mu(\{k\}) = (1-p)p^k$ (k = 0, 1, 2...).
 - (c) (homework) The "optimistic geometric distribution with parameter p" that is, the distribution ν on $\{1, 2, 3, ...\}$ with weights $\nu(\{k\}) = (1-p)p^{k-1}$ (k = 1, 2...).
 - (d) The Poisson distribution with parameter λ that is, the distribution η on $\{0, 1, 2...\}$ with weights $\eta(\{k\}) = e^{-\lambda} \frac{\lambda^k}{k!}$ (k = 0, 1, 2...).
 - (e) The exponential distribution with parameter λ that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x}, \text{ if } x > 0\\ 0, \text{ if not} \end{cases}$$

3.3 Calculate the characteristic function of the normal distribution $\mathcal{N}(m, \sigma^2)$. (Remember the definition from the old times: $\mathcal{N}(m, \sigma^2)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$\int_{-\infty}^{\infty} f_{m,\sigma^2}(x) \,\mathrm{d}x = 1$$

for every m and σ .

3.4 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following **Theorem 2 (dominated convergence)** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_1, f_2, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ -almost everywhere. (That is, $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ -measure zero.) Assume furthermore that the f_n admit a common integrable dominating function: there exists a $g: \Omega \to \mathbb{R}$ such that $|f_n(x)| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \, d\mu < \infty$. Then (all the f_n and also f are integrable and)

$$\lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu = \int_{\Omega} f \, \mathrm{d}\mu.$$

Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t) = \mathbb{E}(e^{itX})$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}(|X|^n) < \infty$), then ψ is n times continuously differentiable and

$$\psi^{(k)}(0) = i^k \mathbb{E}(X^k), \quad k = 0, 1, 2, \dots, n.$$

Homework: Write the proof in detail for n = 1. Don't forget about proving *continuous* differentiability – meanin that you also have to check that the derivative is continuous.

3.5 (homework) Exchangeability of integral and limit. Consider the sequences of functions f_n : $[0,1] \to \mathbb{R}$ and $g_n : [0,1] \to \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$, such that $f_n(x) \to f(x)$

and $g_n(x) \to g(x)$ for Lebesgue almost every $x \in [0,1]$? What is $\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right)$ and

 $\lim_{n\to\infty} \left(\int_0^1 g_n(x)dx\right)?$ Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < 1/n, \\ 2n - n^2 x & \text{if } 1/n \le x \le 2/n, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Write n as $n = 2^k + l$, where k = 0, 1, 2... and $l = 0, 1, ..., 2^k - 1$ (this can be done in a unique way for every n). Now let

$$g_n(x) = \begin{cases} 1 & \text{if } \frac{l}{2^k} \le x < \frac{l+1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

3.6 Exchangeability of integrals. Consider the following function $f : \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 \le x - y \le 1, \\ -1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 < y - x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

- 3.7 Weak convergence and densities.
 - (a) Prove the following

Theorem 4 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
 - iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.