Probability 1
 CEU Budapest, fall semester 2014
 Imre Péter Tóth
 Homework sheet 3 - due on 16.10.2014 - and exercises for practice

3.1 The Fatou lemma is the following

Theorem $1 \operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots a sequence of measureabale functions $f_{n}: \Omega \rightarrow \mathbb{R}$, which are nonneagtive, e.g. $f_{n}(x) \geq 0$ for every $n=1,2, \ldots$ and every $x \in \Omega$. Then

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \mu(x) \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)
$$

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing $\Omega=\mathbb{N}, \mu$ as the counting measure χ on \mathbb{N}, and constructing a sequence of nonnegative $f_{n}: \mathbb{N} \rightarrow \mathbb{R}$ for which $f_{n}(i) \xrightarrow{n \rightarrow \infty} 0$ for every $i \in \mathbb{N}$, but $\int_{\mathbb{N}} f_{n}(i) \mathrm{d} \chi(i) \geq 1$ for all n.
3.2 Calculate the characteristic function of
(a) (homework) The Bernoulli distribution $B(p)$ (see Homework sheet 1)
(b) (homework) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) (homework) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.
(e) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array} .\right.
$$

3.3 Calculate the characteristic function of the normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$. (Remember the definition from the old times: $\mathcal{N}\left(m, \sigma^{2}\right)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} .
$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$
\int_{-\infty}^{\infty} f_{m, \sigma^{2}}(x) \mathrm{d} x=1
$$

for every m and σ.
3.4 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) $\operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ-almost everywehere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following
Theorem 3 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t)=\mathbb{E}\left(e^{i t X}\right)$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}\left(|X|^{n}\right)<\infty$), then ψ is n times continuously differentiable and

$$
\psi^{(k)}(0)=i^{k} \mathbb{E}\left(X^{k}\right), \quad k=0,1,2, \ldots, n .
$$

Homework: Write the proof in detail for $n=1$. Don't forget about proving continuous differentiability - meanin that you also have to check that the derivative is continuous.
3.5 (homework) Exchangeability of integral and limit. Consider the sequences of functions f_{n} : $[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

3.6 Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
3.7 Weak convergence and densities.
(a) Prove the following

Theorem 4 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_{n} \Rightarrow \mu$ (weakly).
(Hint: denote the cumulative distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf _{n \rightarrow \infty} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.
(b) Show examples of the following facts:
i. It can happen that the f_{n} converge pointwise to some f, but the sequence μ_{n} is not weakly convergent, because f is not a density.
ii. It can happen that the μ_{n} are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but μ is not absolutely continuous.
iii. It can happen that the μ_{n} and also μ are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but $f_{n}(x)$ does not converge to $f(x)$ for any x.

