CEU Budapest, fall semester 2014

Imre Péter Tóth
Homework sheet 4 - due on 30.10 .2014 - and exercises for practice
4.1 (homework) Durrett [1], Exercise 3.2.11
4.2 (homework) Poisson approximation of the binomial distribution. Fix $0<\lambda \in \mathbb{R}$. Show that if X_{n} has binomial distribution with parameters (n, p) such that $n p \rightarrow \lambda$ as $n \rightarrow \infty$, then X_{n} converges to $\operatorname{Poi}(\lambda)$ weakly. This can be done in a completely elementary way, using your favourite definition of weak convergence, or by using one of the stronger tools of weak convergence.
4.3 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
4.4 (homework) Let $F: \mathbb{R} \rightarrow[0,1]$ be a probability distribution function, and let Y be a random variable which is uniformly distributed in $[0,1]$. Let $X=\sup \{x \mid F(x)<Y\}$. Show that the distribution function of X is exactly F.
4.5 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with $\mathbb{E} X_{1}=0$ and $\mathbb{E}\left(X_{1}^{4}\right)<\infty$ and set $S_{n}=$ $X_{1}+\cdots+X_{n}$. Show that there is a $C<\infty$ such that $\mathbb{E}\left(S_{n}^{4}\right) \leq C n^{2}$.
4.6 For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$.
(Hint: estimate the logarithm of $(1-p)$ with p.)
4.7 Durrett [1], Exercise 3.2.6
4.8 Durrett [1], Exercise 3.2.9
4.9 (homework) Durrett [1], Exercise 3.2.12
4.10 Durrett [1], Exercise 3.2.14
4.11 Durrett [1], Exercise 3.2.15

References

[1] Durrett, R. Probability: Theory and Examples, 4th edition. Cambridge University Press (2010)

