Probability 1 CEU Budapest, fall semester 2014 Imre Péter Tóth Homework sheet 6 – due on 20.11.2014 – and exercises for practice

6.1 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ -algebra

 $\mathcal{G} = \{ B \times [0,1] \mid B \subset [0,1] \text{ is a Borel set} \}.$

Let $X : \Omega \to \mathbb{R}$ be the random variable X(x, y) = x(x + y). Calculate $\mathbb{E}(X|\mathcal{G})$.

- 6.2 Let ξ and η be independent random variables uniformly distributed on (0, 1). Let $X = \xi \eta$ and $Y = \xi/\eta$. Calcualte $\mathbb{E}(X|Y)$.
- 6.3 Durrett [1], Exercise 5.1.3
- 6.4 Durrett [1], Exercise 5.1.4
- 6.5 (homework) Durrett [1], Exercise 5.1.6
- 6.6 Durrett [1], Exercise 5.1.9
- 6.7 Durrett [1], Exercise 5.1.10
- 6.8 Durrett [1], Exercise 5.1.11
- 6.9 (homework) Let $p \in (0, 1)$ be fixed, and let q = 1 p. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} by jumping 1 step up with probability p and jumping down with probability q at each time step, independently of what happened before. Let X_n denote the position of the frog after n steps (for n = 0, 1, 2, ...). Assume that the initial position is bounded with probability 1: there are some $a, b \in \mathbb{Z}$ such that $\mathbb{P}(a \leq X_0 \leq b) = 1$.
 - a.) Show that $Y_n := \left(\frac{q}{p}\right)^{X_n}$ is a martingale (w.r.t. the natural filtration).
 - b.) Now let the frog perform the same random walk as before, until it reaches one of the endpoints a or b which are *sticky*: if the frog reaches one of them, it stays there forever. Show that $Y_n := \left(\frac{q}{p}\right)^{X_n}$ is still a martingale (w.r.t. the natural filtration).
- 6.10 (homework) Durrett [1], Exercise 5.2.1
- 6.11 Durrett [1], Exercise 5.2.3
- 6.12 Durrett [1], Exercise 5.2.4
- 6.13 Durrett [1], Exercise 5.2.6

References

[1] Durrett, R. Probability: Theory and Examples, 4th edition. Cambridge University Press (2010)