Probability 1
 CEU Budapest, fall semester 2014
 Imre Péter Tóth
 Homework sheet 6 - due on 20.11.2014 - and exercises for practice

6.1 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega=[0,1] \times[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ-algebra

$$
\mathcal{G}=\{B \times[0,1] \mid B \subset[0,1] \text { is a Borel set }\} .
$$

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable $X(x, y)=x(x+y)$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
6.2 Let ξ and η be independent random variables uniformly distributed on (0,1). Let $X=\xi \eta$ and $Y=\xi / \eta$. Calcualte $\mathbb{E}(X \mid Y)$.
6.3 Durrett [1], Exercise 5.1.3
6.4 Durrett [1], Exercise 5.1.4
6.5 (homework) Durrett [1], Exercise 5.1.6
6.6 Durrett [1], Exercise 5.1.9
6.7 Durrett [1], Exercise 5.1.10
6.8 Durrett [1], Exercise 5.1.11
6.9 (homework) Let $p \in(0,1)$ be fixed, and let $q=1-p$. A frog performs a (discrete time) random walk on the 1 -dimensional lattice \mathbb{Z} by jumping 1 step up with probability p and jumping down with probability q at each time step, independently of what happened before. Let X_{n} denote the position of the frog after n steps (for $n=0,1,2, \ldots$). Assume that the initial position is bounded with probability 1 : there are some $a, b \in \mathbb{Z}$ such that $\mathbb{P}\left(a \leq X_{0} \leq b\right)=1$.
a.) Show that $Y_{n}:=\left(\frac{q}{p}\right)^{X_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Now let the frog perform the same random walk as before, until it reaches one of the endpoints a or b which are sticky: if the frog reaches one of them, it stays there forever. Show that $Y_{n}:=\left(\frac{q}{p}\right)^{X_{n}}$ is still a martingale (w.r.t. the natural filtration).
6.10 (homework) Durrett [1], Exercise 5.2.1
6.11 Durrett [1], Exercise 5.2.3
6.12 Durrett [1], Exercise 5.2.4
6.13 Durrett [1], Exercise 5.2.6

References

[1] Durrett, R. Probability: Theory and Examples, 4th edition. Cambridge University Press (2010)

