Probability 1

CEU Budapest, fall semester 2014
Imre Péter Tóth
Midterm exam, 04.11.2014
Working time: 150 minutes $(\approx \infty)$
Every question is worth 10 points. Maximum total score: 30.

1. Let X_{1}, X_{2}, \ldots be independent random variables with different Bernoulli distributions: $X_{n} \sim B\left(p_{n}\right)$ with some sequence of probabilities $p_{1}, p_{2}, \ldots \in(0,1)$. Consider the cases below. Does the sequence X_{n} converge weakly? Does it converge in probability? Does it converge almost surely? If yes, what is the limit?
a.) $p_{n}=\frac{1}{n}$
b.) $p_{n}=\frac{1}{n^{2}}$
c.) $p_{n}=\frac{1}{2}+\frac{1}{n^{2}}$
2. Let p_{1}, p_{2}, \ldots be a sequence in $(0,1)$ such that $p_{n} \rightarrow \frac{1}{3}$. Let the random variable $X_{n} \sim$ $\operatorname{Bin}\left(n, p_{n}\right)$. Does the sequence $\frac{X_{n}}{n}$ have a weak limit (for any such sequence p_{n})? When it exists, what is the limit?
3. Let the random variables X_{1}, X_{2}, \ldots be independent and uniformly distributed on the interval $[0,1]$. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ and let $Y_{n}=n\left(1-M_{n}\right)$. Show that the sequence Y_{n} has a weak limit and find the limiting distribution. (Meaning: describe it in your favourite way, or write down its name.)
4. For a nonnegative integer valued random variable X, let $p_{k}=\mathbb{P}(X=k)$. Then the generating function of X is given by

$$
g(z):=\sum_{k=0}^{\infty} p_{k} z^{k}
$$

for every $z \in \mathbb{R}$ where this power series is convergent. Show that
a.) g exists for any $z \in[0,1]$, for any X.
b.) If $\mathbb{E} X<\infty$, then g is differentiable from the left at $z=1$ and $g^{\prime}(1)=\mathbb{E} X$.
c.) (Bonus:) If $\mathbb{E} X=\infty$, then $g^{\prime}(1)=\infty$ in the appropriate sense.

