
Probability 1
CEU Budapest, fall semester 2015

Imre Péter Tóth
Homework sheet 1 – due on 13.10.2015 – and exercises for practice

1. Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where
2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

• ∅ ∈ F
• if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

• if A1, A2, · · · ∈ F , then (∪∞

i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.

2. Let Ω be a nonempty set, let I be an arbitrary nonempty index set, and for every i ∈ I let
Fi be a σ-algebra over Ω. (See the previous exercise for the definition.) Define G as the
intersection of all the σ-algebras Fi:

G := {A | A ∈ Fi for all i ∈ I} .

Show that G is also a σ-algebra over Ω.

3. Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of mea-
surable sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) < ∞, then µ(∩∞

i=1Ai) =
limi→∞ µ(Ai) (and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing
a counterexample for the statement when this condition does not hold.

4. (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define
the random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter
p) in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distirbution as a measure on R, giving the weight
P(ξ ∈ B) of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads
tossed.
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i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · ·+ ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

5. In the probability space (Ω,F ,P) let Ω = (0, 1), let F be the Borel σ-algebra and let P be
the Lebesgue measure (restricted to F). Let the random variable X : Ω → R be defined
as

X(ω) := tan
(

−π
2
+ πω

)

.

(a) Show that X is measurable as a function X : Ω → R when Ω is equipped with the
Borel σ-algebra F and R is also equipped with its Borel σ-algebra B. (Remark: This
exercise is only for those interested in every mathematical detail. It is not at all as
important as it may seem. You are also welcome to just believe that X is measurable.)

(b) (homework) Let µ be the distribution of X , which means that µ is the measure on
(R,B) defined by

µ(A) := P({ω ∈ Ω |X(ω) ∈ A}) for all A ∈ B.

(In other words, µ is the push-forward of the measure P to R by X .)

“Describe” the measure µ by calculating F (x) := µ((−∞, x]) for every x ∈ R. Also
calculate µ([a, b]) for every interval [a, b] ⊂ R (with a ≤ b).

(This function F : R → [0, 1] is called the (cumulative) distribution function of the
measure µ, or also the (cumulative) distribution function of the random variable X.)

6. The Fatou lemma is the following

Theorem 2 Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale
functions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and
every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing Ω = R,
µ as the Lebesgue measure on R, and constructing a sequence of nonnegative fn : R → R

for which fn(x)
n→∞−−−→ 0 for every x ∈ R, but

∫

R
fn(x) dx ≥ 1 for all n.

7. The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n
.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,
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and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an
3n
, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0
for every x ∈ R. (As a consequence, the cumulative distribution function of X is
continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

8. (homework) Let χ be the counting measure on N. Calculate
∫

N
f dχ if f : N → R is

given by

a.) f(k) := 1
2k

b.) f(k) := 1
k

c.) f(k) := (−1)k

k

9. (homework) Let χ be the counting measure on R and µ be Lebesgue measure on R.

a.) Show that µ is absolutely contuinuous w.r.t. χ: µ≪ χ.

b.) Show that µ does not have a density f w.r.t. χ: there is no such f that µ(B) =
∫

B
f dχ

would hold for every (Borel) B ⊂ R.

c.) What’s wrong with the Ranod-Nikodym theorem?

10. Let χ be the counting measure on N and let the measure µ be absolutely continuous with
respect to χ, with density f(k) := qkp, where p ∈ (0, 1) and q = 1− p. Define X : N → R

as X(k) := k.

a.) Calculate
∫

N
X dµ.

b.) Calculate
∫

N
X2 dµ.

11. (homework) Let µ be a measure on R which has density f(x) := x2 with respect to
Lebesgue measure. Let ν be a measure on R which has density g(x) :=

√
x with respect

to µ. Calculate ν([1, 3]).

12. (homework) Let the random variable X have density

f(x) =

{

2− 2x if 0 < x < 1

0 if not
,

with respect to Lebesgue measure on R.

a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.

b.) Let Y := X2. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and
find its density.

c.) Calculate E(sin(1−X)).

3



13. Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

14. Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 3 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for
a set of x-es with µ-measure zero.) Assume furthermore that the fn admit a common
integrable dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for
every x ∈ Ω and n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following

Theorem 4 (differentiability of the characteristic function) Let X be a real valued
random variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment
of X exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable
and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

Write the proof in detail for n = 1. Don’t forget about proving continuous differentiability
– meaning that you also have to check that the derivative is continuous.

15. Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R

and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) →
f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim

n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about
these specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done
in a unique way for every n). Now let

gn(x) =

{

1 if l

2k
≤ x < l+1

2k
,

0 otherwise.
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16. Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?
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