Probability 1
CEU Budapest, fall semester 2015
Imre Péter Tóth
Homework sheet 1 - due on 13.10.2015 - and exercises for practice

1. Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of Ω) is called $a \sigma$-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.
2. Let Ω be a nonempty set, let I be an arbitrary nonempty index set, and for every $i \in I$ let \mathcal{F}_{i} be a σ-algebra over Ω. (See the previous exercise for the definition.) Define \mathcal{G} as the intersection of all the σ-algebras \mathcal{F}_{i} :

$$
\mathcal{G}:=\left\{A \mid A \in \mathcal{F}_{i} \text { for all } i \in I\right\}
$$

Show that \mathcal{G} is also a σ-algebra over Ω.
3. Continuity of the measure
(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
4. (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array} .\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter $p)$ in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distirbution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in B)$ of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.
5. In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ let $\Omega=(0,1)$, let \mathcal{F} be the Borel σ-algebra and let \mathbb{P} be the Lebesgue measure (restricted to \mathcal{F}). Let the random variable $X: \Omega \rightarrow \mathbb{R}$ be defined as

$$
X(\omega):=\tan \left(-\frac{\pi}{2}+\pi \omega\right)
$$

(a) Show that X is measurable as a function $X: \Omega \rightarrow \mathbb{R}$ when Ω is equipped with the Borel σ-algebra \mathcal{F} and \mathbb{R} is also equipped with its Borel σ-algebra \mathcal{B}. (Remark: This exercise is only for those interested in every mathematical detail. It is not at all as important as it may seem. You are also welcome to just believe that X is measurable.)
(b) (homework) Let μ be the distribution of X, which means that μ is the measure on $(\mathbb{R}, \mathcal{B})$ defined by

$$
\mu(A):=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in A\}) \quad \text { for all } A \in \mathcal{B} .
$$

(In other words, μ is the push-forward of the measure \mathbb{P} to \mathbb{R} by X.)
"Describe" the measure μ by calculating $F(x):=\mu((-\infty, x])$ for every $x \in \mathbb{R}$. Also calculate $\mu([a, b])$ for every interval $[a, b] \subset \mathbb{R}$ (with $a \leq b$).
(This function $F: \mathbb{R} \rightarrow[0,1]$ is called the (cumulative) distribution function of the measure μ, or also the (cumulative) distribution function of the random variable X.)
6. The Fatou lemma is the following

Theorem 2 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots a sequence of measureabale functions $f_{n}: \Omega \rightarrow \mathbb{R}$, which are nonneagtive, e.g. $f_{n}(x) \geq 0$ for every $n=1,2, \ldots$ and every $x \in \Omega$. Then

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \mu(x) \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)
$$

(and both sides make sense).
Show that the inequality in the opposite direction is in general false, by choosing $\Omega=\mathbb{R}$, μ as the Lebesgue measure on \mathbb{R}, and constructing a sequence of nonnegative $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for which $f_{n}(x) \xrightarrow{n \rightarrow \infty} 0$ for every $x \in \mathbb{R}$, but $\int_{\mathbb{R}} f_{n}(x) \mathrm{d} x \geq 1$ for all n.
7. The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1 . That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails } \\
2, \text { if the } n \text {-th toss is heads }
\end{array},\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.
8. (homework) Let χ be the counting measure on \mathbb{N}. Calculate $\int_{\mathbb{N}} f \mathrm{~d} \chi$ if $f: \mathbb{N} \rightarrow \mathbb{R}$ is given by
a.) $f(k):=\frac{1}{2^{k}}$
b.) $f(k):=\frac{1}{k}$
c.) $f(k):=\frac{(-1)^{k}}{k}$
9. (homework) Let χ be the counting measure on \mathbb{R} and μ be Lebesgue measure on \mathbb{R}.
a.) Show that μ is absolutely contuinuous w.r.t. χ : $\mu \ll \chi$.
b.) Show that μ does not have a density f w.r.t. χ : there is no such f that $\mu(B)=\int_{B} f \mathrm{~d} \chi$ would hold for every (Borel) $B \subset \mathbb{R}$.
c.) What's wrong with the Ranod-Nikodym theorem?
10. Let χ be the counting measure on \mathbb{N} and let the measure μ be absolutely continuous with respect to χ, with density $f(k):=q^{k} p$, where $p \in(0,1)$ and $q=1-p$. Define $X: \mathbb{N} \rightarrow \mathbb{R}$ as $X(k):=k$.
a.) Calculate $\int_{\mathbb{N}} X \mathrm{~d} \mu$.
b.) Calculate $\int_{\mathbb{N}} X^{2} \mathrm{~d} \mu$.
11. (homework) Let μ be a measure on \mathbb{R} which has density $f(x):=x^{2}$ with respect to Lebesgue measure. Let ν be a measure on \mathbb{R} which has density $g(x):=\sqrt{x}$ with respect to μ. Calculate $\nu([1,3])$.
12. (homework) Let the random variable X have density

$$
f(x)=\left\{\begin{array}{l}
2-2 x \text { if } 0<x<1 \\
0 \text { if not }
\end{array}\right.
$$

with respect to Lebesgue measure on \mathbb{R}.
a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.
b.) Let $Y:=X^{2}$. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and find its density.
c.) Calculate $\mathbb{E}(\sin (1-X))$.
13. Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)
14. Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 3 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywehere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following
Theorem 4 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t)=\mathbb{E}\left(e^{i t X}\right)$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}\left(|X|^{n}\right)<\infty$), then ψ is n times continuously differentiable and

$$
\psi^{(k)}(0)=i^{k} \mathbb{E}\left(X^{k}\right), \quad k=0,1,2, \ldots, n .
$$

Write the proof in detail for $n=1$. Don't forget about proving continuous differentiability - meaning that you also have to check that the derivative is continuous.
15. Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow$ $f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

16. Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?

