Probability 1
CEU Budapest, fall semester 2015
Imre Péter Téth
Homework sheet 1 — due on 13.10.2015 — and exercises for practice

1. Define a o-algebra as follows:

Definition 1 For a nonempty set Q, a family F of subsets of w (i.e. F C 2%, where
2% :={A: A CQ} is the power set of Q) is called a o-algebra over ) if

e )eF

o if Ac F, then A° :=Q\ A€ F (that is, F is closed under complement taking)

o if Ay, Ag, -+ € F, then (U2, A;) € F (that is, F is closed under countable union).

Show from this definition that a o-algebra is closed under countable intersection, and under
finite union and intersection.

2. Let Q2 be a nonempty set, let I be an arbitrary nonempty index set, and for every i € I let
Fi be a o-algebra over €. (See the previous exercise for the definition.) Define G as the
intersection of all the o-algebras F;:

G:={A| Aec Fforalliel}.
Show that G is also a g-algebra over (2.

3. Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If (Q,F, p) is a measure space and Ay, As, ... is an increasing sequence of mea-
surable sets (i.e. A; € F and A; C Aty for all i), then p(U2,A;) = lim; o p(A;)
(and both sides of the equation make sense).

ii. If (Q, F, p) is a measure space, Ay, Ao, ... is a decreasing sequence of measurable
sets (i.e. A; € F and A; D Ajyq for all i) and p(Ay) < oo, then p(N2,A;) =
lim; o 1(A;) (and both sides of the equation make sense).

(b) Show that in the second statement the condition p(A;) < oo is needed, by constructing
a counterexample for the statement when this condition does not hold.

4. (a) We toss a biased coin, on which the probability of heads is some 0 < p < 1. Define
the random variable ¢ as the indicator function of tossing heads, that is

£ 0, if tails
" 11, if heads

i. Describe the distribution of ¢ (called the Bernoulli distribution with parameter
p) in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distirbution as a measure on R, giving the weight
P(¢ € B) of every Borel subset B of R.

iii. Calculate the expectation of £.

(b) We toss the previous biased coin n times, and denote by X the number of heads
tossed.



i. Describe the distribution of X (called the Binomial distribution with parameters
(n,p)) by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,
iii. and also by noticing that X = & + & + - - - + &, where &; is the indicator of the
1-th toss being heads, and using linearity of the expectation.

5. In the probability space (2, F,P) let Q = (0, 1), let F be the Borel o-algebra and let P be
the Lebesgue measure (restricted to F). Let the random variable X : 2 — R be defined

as

(a)

Show that X is measurable as a function X : 2 — R when (2 is equipped with the
Borel g-algebra F and R is also equipped with its Borel o-algebra B. (Remark: This
exercise is only for those interested in every mathematical detail. It is not at all as
important as it may seem. You are also welcome to just believe that X is measurable.)

(homework) Let p be the distribution of X, which means that p is the measure on
(R, B) defined by

p(A) =P{w e Q| X(w) € A}) forall A€ B.

(In other words, pu is the push-forward of the measure P to R by X.)
“Describe” the measure p by calculating F'(z) := pu((—o0, z]) for every z € R. Also
calculate p([a,b]) for every interval [a,b] C R (with a <b).

(This function F : R — [0,1] is called the (cumulative) distribution function of the
measure i, or also the (cumulative) distribution function of the random variable X .)

6. The Fatou lemma is the following

Theorem 2 Let (2, F, 1) be a measure space and fi, fa, ...a sequence of measureabale
functions f, : Q@ — R, which are nonneagtive, e.qg. f,(x) > 0 for everyn = 1,2,... and
every x € Q). Then

/liminffn( )du(z) < hmmf/ fo(x)dp(z
Q

n—o0 n—oo

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing 2 = R,
1 as the Lebesgue measure on R, and constructing a sequence of nonnegative f, : R — R
for which f,(z) = 0 for every = € R, but [, f,(z)dz > 1 for all n.

7. The ternary number 0.ayasa;3 . .. is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence ay, as, as, ... with a,, € {0, 1,2}, by definition
“a
0.&1&2&3 e = 3—Z
n=1

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

0, if the n-th toss is tails,
Ay = )
2, if the n-th toss is heads
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10.

11.

12.

and setting X = 0.aja2a3... (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C' defined as

C:= {i;—z,ane{0,2}(n:1,2,...)}.

n=1
Show that

(a) The distribution of X gives zero weight to every point — that is, P(X = x) = 0
for every x € R. (As a consequence, the cumulative distribution function of X is
continuous. )

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

(homework) Let x be the counting measure on N. Calculate [y fdx if f: N — R is
given by

a.) f(k) = 2%
b) f(k) =}
c.) f(k) =55

(homework) Let x be the counting measure on R and p be Lebesgue measure on R.

a.) Show that u is absolutely contuinuous w.r.t. x: p < x.

b.) Show that 4 does not have a density f w.r.t. x: there is no such f that u(B) = [ fdyx
would hold for every (Borel) B C R.

c.) What’s wrong with the Ranod-Nikodym theorem?

Let x be the counting measure on N and let the measure p be absolutely continuous with
respect to x, with density f(k) := ¢*p, where p € (0,1) and ¢ = 1 — p. Define X : N — R
as X (k) := k.

a.) Calculate [ X dp.

b.) Calculate [ X?*dp.

(homework) Let u be a measure on R which has density f(x) := x* with respect to

Lebesgue measure. Let v be a measure on R which has density g(x) := y/z with respect
to u. Calculate v([1, 3]).

(homework) Let the random variable X have density

2-2zif0<z <1
€Tr) =
/(@) {Oifnot

with respect to Lebesgue measure on R.

a.) Show that this f is indeed the density (w.r.t. Lebesgue) of a probability distribution.

b.) Let Y := X?. Show that Y is also absolutely continuous w.r.t. Lebesgue measure and
find its density.

c.) Calculate E(sin(1 — X)).



13.

14.

15.

Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops — i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X.
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 3 (dominated convergence) Let (2, F, u) be a measure space and fi, fa, ...
measurable real valued functions on €2 which converge to the limit function pointwise, pi-
almost everywehere. (That is, lim, o fo(z) = f(z) for every x € Q, except possibly for
a set of x-es with p-measure zero.) Assume furthermore that the f, admit a common
integrable dominating function: there ezists a g : Q@ — R such that |f,(z)| < g(x) for
every x € ) and n € N, and ngdu < 00. Then (all the f,, and also f are integrable and)

lim [ f,dp= / fdp.
Use this theorem to prove the following

Theorem 4 (differentiability of the characteristic function) Let X be a real valued
random variable, (t) = E(e'X) its characteristic function and n € N. If the n-th moment
of X ezists and is finite (i.e. E(|X|") < 00), then ¢ is n times continuously differentiable
and

P®(0) = *E(XF), k=0,1,2,...,n

Write the proof in detail for n = 1. Don’t forget about proving continuous differentiability
— meaning that you also have to check that the derivative is continuous.

Ezchangeability of integral and limit. Consider the sequences of functions f, : [0,1] — R
and g, : [0,1] = R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0,1] — R and g : [0,1] — R, such that fn(a:) —

f(z) and g,(z) — g(x) for Lebesgue almost every z € [0,1]7 What is hm ( [ falz )

and hm ( [ gn(z d:p) ? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about
these specific examples?

(a)

n’z if 0 <z <1/n,
fol@)=<2n—n?z ifl/n<x<2/n,
0 otherwise.

(b) Write n as n = 2% +1, where k =0,1,2... and [ = 0,1,...,2* — 1 (this can be done
in a unique way for every n). Now let

1 1f s << 1;17
gn(l’) =
0 otherw1se.



16. Ezchangeability of integrals. Consider the following function f : R? — R:

1 if O0<z,0<yand0<z—y<1,
flz)=4-1 if O0<z,0<yandO<y—z<1,
0 otherwise.

“+oo /+oo “+oo /+oo
Calculate [ ( i f(x,y)d:c) dy and ( | fz, y)dy) dx. What’s the situation with the

—00

Fubini theorem?

— 00



