Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Homework sheet 2 – due on 03.11.2015 – and exercises for practice

1. Calculate the characteristic function of

- (a) The Bernoulli distribution B(p) (see Homework sheet 1)
- (b) The "pessimistic geometric distribution with parameter p" that is, the distribution μ on $\{0, 1, 2...\}$ with weights $\mu(\{k\}) = (1-p)p^k$ (k = 0, 1, 2...).
- (c) The "optimistic geometric distribution with parameter p" that is, the distribution ν on $\{1, 2, 3, ...\}$ with weights $\nu(\{k\}) = (1-p)p^{k-1}$ (k = 1, 2...).
- (d) The Poisson distribution with parameter λ that is, the distribution η on $\{0, 1, 2...\}$ with weights $\eta(\{k\}) = e^{-\lambda} \frac{\lambda^k}{k!}$ (k = 0, 1, 2...).
- (e) The exponential distribution with parameter λ that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0\\ 0, & \text{if not} \end{cases}$$

2. Calculate the characteristic function of the normal distribution $\mathcal{N}(m, \sigma^2)$. (Remember the definition from the old times: $\mathcal{N}(m, \sigma^2)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0, 1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$\int_{-\infty}^{\infty} f_{m,\sigma^2}(x) \,\mathrm{d}x = 1$$

for every m and σ .

- 3. Weak convergence and densities.
 - (a) Prove the following

Theorem 1 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
 - iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.

- 4. Poisson approximation of the binomial distribution. Fix $0 < \lambda \in \mathbb{R}$. Show that if X_n has binomial distribution with parameters (n, p) such that $np \to \lambda$ as $n \to \infty$, then X_n converges to $Poi(\lambda)$ weakly.
- 5. Let X be uniformly distributed on [-1; 1], and set $Y_n = nX$.
 - a.) Calculate the characteristic function ψ_n of Y_n .
 - b.) Calculate the pointwise limit $\lim_{n\to\infty}\psi_n(t)$, if it exists.
 - c.) Does (the distribution of) Y_n have a weak limit?
 - d.) How come?
- 6. (homework) Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined as

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } -n^2 \le x \le n^2 \\ 0 & \text{if not} \end{cases}$$

Let μ be Lebesgue measure. Is $\int \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu$?

7. (homework) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be

$$f(x) = \begin{cases} y - x & \text{if } x > 0, \ y > 0 \text{ and } |y - x| < 1 \\ 0 & \text{if not} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

- 8. (homework) Show that if $0 \le p_n \to 0, 0 \le a_n \to 0, \frac{p_n}{a_n} \to \lambda \in (0, \infty)$ and $X_n \sim Geom(p_n)$, then $a_n X_n \to Exp(\lambda)$.
- 9. (homework) Let $S = \mathbb{Z}$ and let the random variables $X, X_1, X_2, \dots \in S$.
 - a.) Show that $X_n \Rightarrow X$ if and only if $\mathbb{P}(X_n = k) \to \mathbb{P}(X = k)$ as $n \to \infty$ for every $k \in S$.
 - b.) It this also true for some arbitrary countable $S \subset \mathbb{R}$?
- 10. (homework) Let $X_n \sim Bin(n, \frac{2}{3})$. Calculate $\lim_{n\to\infty} \mathbb{E}\left(\sin\left(\left(\frac{X_n}{n}\right)^4\right)\right)$.