Probability 1
 CEU Budapest, fall semester 2015
 Imre Péter Tóth
 Homework sheet 3 - due on 01.12.2015 - and exercises for practice

3.1 Let X_{1}, X_{2}, \ldots be independent random variables such that X_{k} can only take that values -1 and $k^{2}-1$, with the probabilities $\mathbb{P}\left(X_{k}=k^{2}-1\right)=\frac{1}{k^{2}}$ and $\mathbb{P}\left(X_{k}=-1\right)=1-\frac{1}{k^{2}}$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.
a.) Calculate $\mathbb{E} X_{k}$ and $\mathbb{E} S_{n}$.
b.) Show that $\frac{S_{n}}{n} \rightarrow-1$ almost surely.
3.2 (homework) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. Prove that the following two statements are equivalent:
(i) $\mathbb{E}\left|X_{i}\right|<\infty$.
(ii) $\mathbb{P}\left(\left|X_{n}\right|>n\right.$ for infinitely many n-s $)=0$.
3.3 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

3.4 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(ii) From every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ a sub-subsequence $\left\{n_{k_{j}}\right\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_{j}}} \rightarrow X$ almost surely as $j \rightarrow \infty$.
3.5 Let X_{1}, X_{2}, \ldots be independent such that X_{n} has $\operatorname{Bernoulli}\left(p_{n}\right)$ distribution. Determine what property the sequence p_{n} has to satisfy so that
(a) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$
(b) $X_{n} \rightarrow X$ almost surely as $n \rightarrow \infty$.
3.6 Let X_{1}, X_{2}, \ldots be independent random variables. Show that $\mathbb{P}\left(\sup _{n} X_{n}<\infty\right)=1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>A\right)<\infty$.
3.7 (homework) Let X_{1}, X_{2}, \ldots be independent exponentially distributed random variables such that X_{n} has parameter λ_{n}. Let $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$, then $S_{n} \rightarrow \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $S_{n} \rightarrow S$ almost surely, where S is some random variable which is almost surely finite. (Hint: the second part is easy. For the first part, a possible solution is to let x_{i} be such that $\mathbb{P}\left(X_{i} \geq x_{i}\right)=\frac{1}{2}, Y_{i}:=x_{i} \mathbf{1}_{\left\{X_{i} \geq x_{i}\right\}}, Z_{i}:=x_{i}-Y_{i}$ and use that $S_{n} \geq \sum_{i=1}^{n} Y_{i}$.)
3.8 Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution $\operatorname{Bernoulli}(p)$ for some $p \in(0 ; 1)$ but $p \neq \frac{1}{2}$. Let $Y:=\sum_{n=1}^{\infty} 2^{-n} X_{n}$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
3.9 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space and suppose that $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $Y_{n}=f\left(X_{n}\right)$ and $Y=f(X)$, show that $Y_{n} \rightarrow Y$ in probability as $n \rightarrow \infty$.
(b) Show that if the X_{n} are almost surely uniformly bounded [that is: there exists a constant $M<\infty$ such that $\left.\mathbb{P}\left(\forall n \in \mathbb{N}\left|X_{n}\right| \leq M\right)=1\right]$, then $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X$.
(c) Show, through an example, that for the previous statement, tha condition of boundedness is needed.
3.10 Let the random variables $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots, X$ and Y be defined on the same probability space and assume that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ in probability. Show that
(a) $X_{n} Y_{n} \rightarrow X Y$ in probability.
(b) If almost surely $Y_{n} \neq 0$ and $Y \neq 0$, then $X_{n} / Y_{n} \rightarrow X / Y$ in probability.
3.11 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be defined on the same probability space and let $Y_{n}:=\sup _{m \geq n}\left|X_{m}\right|$. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
(ii) $Y_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$.

