Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Homework sheet 3 – due on 01.12.2015 – and exercises for practice

- 3.1 Let X_1, X_2, \ldots be independent random variables such that X_k can only take that values -1and $k^2 - 1$, with the probabilities $\mathbb{P}(X_k = k^2 - 1) = \frac{1}{k^2}$ and $\mathbb{P}(X_k = -1) = 1 - \frac{1}{k^2}$. Let $S_n = X_1 + X_2 + \cdots + X_n$.
 - a.) Calculate $\mathbb{E}X_k$ and $\mathbb{E}S_n$.
 - b.) Show that $\frac{S_n}{n} \to -1$ almost surely.
- 3.2 (homework) Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n-s) = 0.$
- 3.3 Prove that for any sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0 \text{ almost surely.}$$

- 3.4 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.
- 3.5 Let X_1, X_2, \ldots be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that
 - (a) $X_n \to X$ in probability as $n \to \infty$
 - (b) $X_n \to X$ almost surely as $n \to \infty$.
- 3.6 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.7 (homework) Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite. (*Hint: the second part is easy. For the first part, a possible solution is to let* x_i *be such that* $\mathbb{P}(X_i \ge x_i) = \frac{1}{2}$, $Y_i := x_i \mathbf{1}_{\{X_i \ge x_i\}}$, $Z_i := x_i - Y_i$ and use that $S_n \ge \sum_{i=1}^n Y_i$.)
- 3.8 Let X_1, X_2, \ldots be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0, 1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.

- 3.9 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space and suppose that $X_n \to X$ in probability as $n \to \infty$.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, $Y_n = f(X_n)$ and Y = f(X), show that $Y_n \to Y$ in probability as $n \to \infty$.
 - (b) Show that if the X_n are almost surely uniformly bounded [that is: there exists a constant $M < \infty$ such that $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1$], then $\lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X$.
 - (c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
- 3.10 Let the random variables $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$ and Y be defined on the same probability space and assume that $X_n \to X$ and $Y_n \to Y$ in probability. Show that
 - (a) $X_n Y_n \to XY$ in probability.
 - (b) If almost surely $Y_n \neq 0$ and $Y \neq 0$, then $X_n/Y_n \rightarrow X/Y$ in probability.
- 3.11 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ be defined on the same probability space and let $Y_n := \sup_{m>n} |X_m|$. Prove that the following two statements are equivalent:
 - (i) $X_n \to 0$ almost surely as $n \to \infty$.
 - (ii) $Y_n \to 0$ in probability as $n \to \infty$.