Probability 1
 CEU Budapest, fall semester 2015
 Imre Péter Tóth
 Homework sheet 4 - due on 11.12.2015 - and exercises for practice

4.1 (homework) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega=[0,1] \times[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbb{P} is the Lebesgue measure on ω (restricted to \mathcal{F}). Let \mathcal{G} be the σ-algebra

$$
\mathcal{G}=\{[0,1] \times B \mid B \subset[0,1] \text { is a Borel set }\} .
$$

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable $X(x, y)=x^{2}+y^{2}$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
4.2 Let ξ and η be independent random variables uniformly distributed on (0,1). Let $X=\xi \eta$ and $Y=\xi / \eta$. Calcualte $\mathbb{E}(X \mid Y)$.
4.3 Durrett [1], Exercise 5.1.3
4.4 Durrett [1], Exercise 5.1.4
4.5 Durrett [1], Exercise 5.1.6
4.6 (homework) Durrett [1], Exercise 5.1.9
4.7 Durrett [1], Exercise 5.1.10
4.8 (homework) Durrett [1], Exercise 5.1.11. (Hint: think of the picture in Theorem 5.1.8 and the remark after it.)
4.9 (homework) Let $p \in(0,1)$ be fixed, and let $q=1-p$. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} the following way:
The initial position is $X_{0}=0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point $a=-10$ or the point $b=+30$, which are sticky: if the frog reaches one of them, it stays there forever.
Let X_{n} denote the position of the frog after n steps (for $n=0,1,2, \ldots$).
a.) Show that $Y_{n}:=\left(\frac{q}{p}\right)^{X_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Show that Y_{n} converges almost surely to some limiting random variable Y_{∞}. What are the possible values of Y_{∞} ?
c.) How much is $\mathbb{E} Y_{\infty}$ and why?
d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point $a=-10$.
4.10 Durrett [1], Exercise 5.2.1
4.11 Durrett [1], Exercise 5.2.3
4.12 Durrett [1], Exercise 5.2.4
4.13 (homework) Let \mathcal{F}_{n} be a filtration and X any random varibale with $\mathbb{E}|X|<\infty$. Let $X_{n}=$ $\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$.
a.) Show that X_{n} is a martingale w.r.t. \mathcal{F}_{n}.
b.) Show that X_{n} converges almost surely to some limit X_{∞}.
c.) Give a specific example when $X_{\infty} \neq X$.
d.) Give a specific example when $X_{\infty}=X$.
4.14 Durrett [1], Exercise 5.2.6
4.15 Durrett [1], Exercise 5.2.7
4.16 Let X_{n} be a martingale w.r.t. the filtration \mathcal{F}_{n} on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau: \Omega \rightarrow \mathbb{N}$ be a stopping time, meaning

$$
\{\tau=k\}:=\{\omega \in \Omega \mid \tau(\omega)=k\} \in \mathcal{F}_{k} \quad \text { for every } k
$$

Using the notation $a \wedge b:=\min \{a, b\}$, we introduce the process

$$
Y_{n}:=X_{\tau \wedge n}= \begin{cases}X_{n} & \text { if } n<\tau \\ X_{\tau} & \text { if } n \geq \tau\end{cases}
$$

Show that Y_{n} is also a martingale w.r.t. \mathcal{F}_{n}.
4.17 Durrett [1], Exercise 5.2.9

References

[1] Durrett, R. Probability: Theory and Examples, 4th edition. Cambridge University Press (2010)

