Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Final exam, 11.12.2015 Working time: 150 minutes Every question is worth 10 points.

- 1. a.) Calculate the characteristic function of a random variable X which has geometric distribution with parameter p, meaning $\mathbb{P}(X = k) = (1 p)^{k-1}p$, for k = 1, 2, ...
 - b.) Calculate the characteristic function of the exponential distribution with rate λ that is, the distribution with density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if not.} \end{cases}$$

- c.) Use the method of characteristic functions to show that if $Y_n \sim Geom(\frac{1}{n})$, then $\frac{1}{n}Y_n \Rightarrow Exp(1)$.
- 2. Let X_1, X_2, \ldots be independent, but not identically distributed random variables: $X_i \sim B(\frac{1}{3})$ if *i* is odd and $X_i \sim B(\frac{2}{3})$ if *i* is even. Let $S_n = X_1 + X_2 + \cdots + X_n$. Show that $\frac{S_n}{n}$ is almost surely convergent.
- 3. A frog performs a discrete time "lazy" symmetric random walk on the integer lattice \mathbb{Z} with time-dependent jump probabilities: in the *i*th time step it jumps one step down with probability $\frac{p_i}{2}$, it jumps one step up with probability $\frac{p_i}{2}$, and stays where it was with the remaining probability $q_i = 1 p_i$, independently of what happened before. The frog is getting tired: $p_i = \frac{1}{2^i}$. Let S_n be the position of the frog after *n* time steps. Show that S_n is almost surely convergent.
- 4. Use the definition of conditional expectation to show that if $\mathbb{E}|X| < \infty$ and \mathcal{G} is a sub- σ -algebra of \mathcal{F} , then $\mathbb{E}(\mathbb{E}(X | \mathcal{F}) | \mathcal{G}) = \mathbb{E}(X | \mathcal{G})$.
- 5. Let X_n be a submartingale, a < b reals and let U_n show how many times the trajectory of X_n has "crossed" the interval (a,b) from below to above up to time n. The upcrossing inequality says that

 $(b-a)\mathbb{E}U_n \le \mathbb{E}(X_n-a)^+ - \mathbb{E}(X_0-a)^+$

where x^+ denotes the positive part of x, so $x^+ := \max\{x, 0\}$.

Use this to show the martingale convergence theorem, saying that if X_n is a submartingale such that $\mathbb{E}X_n^+ \leq K$ with the same $K < \infty$ for every n, then X_n is almost surely convergent. ("Show" means: sketch the proof.)

6. Consider a bag which initially contains two pieces of paper: one red and one blue. At each time step n = 1, 2, ... we pick a piece of paper totally at random (meaning: uniformly, and independently of the past) from the bag, *cut it into two*, and put *both pieces back*. (So after n steps we have 2 + n pieces, out of which at least 1 is red and at least 1 is blue.)

Let X_n denote the number of red pieces after n steps, and let $Z_n := \frac{X_n}{n+2}$ be the proportion of red pieces to the total.

- a.) Show that Z_n is a martingale.
- b.) Show that Z_n converges almost surely to some limit Z_{∞} .
- c.) (**Bonus:**) What is the distribution of Z_{∞} ?

(Remark: this is the simplest case of Pólya's urn model.)