Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Final exam, 11.12.2015, solutions Working time: 150 minutes Every question is worth 10 points.

- 1. a.) Calculate the characteristic function of a random variable X which has geometric distribution with parameter p, meaning $\mathbb{P}(X = k) = (1 p)^{k-1}p$, for $k = 1, 2, \ldots$
 - b.) Calculate the characteristic function of the exponential distribution with rate λ that is, the distribution with density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if not.} \end{cases}$$

c.) Use the method of characteristic functions to show that if $Y_n \sim Geom(\frac{1}{n})$, then $\frac{1}{n}Y_n \Rightarrow Exp(1)$.

Solution:

a.) With the notation q := 1 - p, using the summability of geometric series

$$\Psi_{Geom(p)}(t) = \mathbb{E}(e^{itX}) = \sum_{k=1}^{\infty} \mathbb{P}(X=k)e^{itk} = \sum_{k=1}^{\infty} q^{k-1}pe^{itk} = pe^{it}\sum_{l=0}^{\infty} \left(qe^{it}\right)^k = \frac{pe^{it}}{1-qe^{it}}.$$

b.) Let $Y \sim Exp(\lambda)$. Then, using that for any $t \in \mathbb{R} \operatorname{Re}(it - \lambda) < 0$

$$\Psi_{Exp(\lambda)}(t) = \mathbb{E}(e^{itY}) = \int_{-\infty}^{\infty} f(x)e^{itx} \, \mathrm{d}x = \int_{0}^{\infty} \lambda e^{-\lambda x} e^{itx} \, \mathrm{d}x = \lambda \int_{0}^{\infty} e^{(it-\lambda)x} \, \mathrm{d}x = \lambda \left[\frac{e^{(it-\lambda)x}}{it-\lambda}\right]_{0}^{\infty} = \frac{\lambda}{it-\lambda}(0-1) = \frac{\lambda}{\lambda-it}.$$

c.) Let $Z_n = \frac{1}{n}Y_n$. The characteristic function of this, using part a.) is

$$\Psi_{Z_n}(t) = \mathbb{E}\left(e^{-it\frac{Y_n}{n}}\right) = \Psi_{Y_n}\left(\frac{t}{n}\right) = \Psi_{Geom(1/n)}\left(\frac{t}{n}\right) = \frac{\frac{1}{n}e^{i\frac{t}{n}}}{1 - \left(1 - \frac{1}{n}\right)e^{i\frac{t}{n}}}.$$

Since we want to calculate the limit as $n \to \infty$, it is nice to write this as

$$\Psi_{Z_n}(t) = \frac{e^{i\frac{t}{n}}}{n\left(1 - e^{i\frac{t}{n}}\right) + e^{i\frac{t}{n}}} = \frac{e^{i\frac{t}{n}}}{e^{i\frac{t}{n}} - \frac{e^{it\frac{1}{n}} - e^{it0}}{\frac{1}{n}}}.$$

Now if $n \to \infty$, then $e^{i\frac{t}{n}} \to 1$ and $\frac{e^{it\frac{1}{n}} - e^{it0}}{\frac{1}{n}} \to \frac{d}{dx}e^{itx} \mid_{x=0} = it$ by the definition of the derivative, so for any $t \in \mathbb{R}$

$$\lim_{n \to \infty} \Psi_{Z_n}(t) = \frac{1}{1 - it} = \Psi_{Exp(1)}(t).$$

Now the continuity theorem implies that $Z_n \Rightarrow Exp(1)$.

2. Let X_1, X_2, \ldots be independent, but not identically distributed random variables: $X_i \sim B(\frac{1}{3})$ if *i* is odd and $X_i \sim B(\frac{2}{3})$ if *i* is even. Let $S_n = X_1 + X_2 + \cdots + X_n$. Show that $\frac{S_n}{n}$ is almost surely convergent.

Solution: The easiest solution is to calculate the sum in groups of two. Indeed, if $Y_i = X_{2i-1} + X_{2i}$, then

$$Y_1 + Y_2 + \dots + Y_k = X_1 + X_2 + \dots + X_{2k},$$

and the Y_i are not only independent, but also identically distributed with common expectation $m = \mathbb{E}Y_1 = \mathbb{E}X_1 + \mathbb{E}X_2 = \frac{1}{3} + \frac{2}{3} = 1$. So for n = 2k even, the strong law of large numbers gives the result for free:

$$\frac{1}{n}S_n = \frac{Y_1 + \dots + Y_k}{2k} = \frac{1}{2}\frac{Y_1 + \dots + Y_k}{k} \to \frac{1}{2}m = \frac{1}{2}$$

almost surely.

For n = 2k + 1 odd, we use that the last term without a pair is negligible. Indeed, $\frac{1}{n}|S_{2k+1} - S_{2k}| = \frac{1}{n}|X_{2k+1}| \le \frac{1}{n}$, so

$$\lim_{k \to \infty} \frac{S_{2k+1}}{2k+1} = \lim_{k \to \infty} \frac{S_{2k}}{2k+1} = \lim_{k \to \infty} \frac{2k}{2k+1} \frac{S_{2k}}{2k} = 1 \cdot \frac{1}{2}$$

almost surely as well.

3. A frog performs a discrete time "lazy" symmetric random walk on the integer lattice \mathbb{Z} with time-dependent jump probabilities: in the *i*th time step it jumps one step down with probability $\frac{p_i}{2}$, it jumps one step up with probability $\frac{p_i}{2}$, and stays where it was with the remaining probability $q_i = 1 - p_i$, independently of what happened before. The frog is getting tired: $p_i = \frac{1}{2^i}$. Let S_n be the position of the frog after *n* time steps. Show that S_n is almost surely convergent.

Solution: Let A_i be the event that in the *i*th tsep the frog *does jump*, and doesn't stay where it was. Then $\mathbb{P}(A_i) = p_i = \frac{1}{2^i}$, so $\sum_{i=1}^{\infty} \mathbb{P}(A_i) < \infty$, and the first Borel-Cantelli lemma ensures that almost surely only finitely many A_i occur. So, almost surely, the frog never jumps after a while, and its position stays constant (implying that it is convergent).

4. Use the definition of conditional expectation to show that if $\mathbb{E}|X| < \infty$ and \mathcal{G} is a sub- σ -algebra of \mathcal{F} , then $\mathbb{E}(\mathbb{E}(X | \mathcal{F}) | \mathcal{G}) = \mathbb{E}(X | \mathcal{G})$.

Solution: Set $Y := \mathbb{E}(X | \mathcal{F})$ and $Z := \mathbb{E}(X | \mathcal{G})$. We need to show that Z satisfies the definition of $\mathbb{E}(Y | \mathcal{G})$:

- Z is integrable, because it is by definition a conditional expectation.
- Z is \mathcal{G} -measurable, because it is by definition a conditional expectation w.r.t. \mathcal{G} .
- For any $A \in \mathcal{G}$, $\int_A Y d\mathbb{P} = \int_A Z d\mathbb{P}$, because both are equal to $\int_A X d\mathbb{P}$. Indeed, $\int_A Z d\mathbb{P} = \int_A X d\mathbb{P}$ by the definition of $Z = \mathbb{E}(X | \mathcal{G})$. For the other half, we have to use that $\mathcal{G} \subset \mathcal{F}$, so $A \in \mathcal{F}$ as well, and the definition of $Y = \mathbb{E}(X | \mathcal{F})$ ensures that $\int_A Y d\mathbb{P} = \int_A X d\mathbb{P}$.
- 5. Let X_n be a submartingale, a < b reals and let U_n show how many times the trajectory of X_n has "crossed" the interval (a,b) from below to above up to time n. The upcrossing inequality says that

$$(b-a)\mathbb{E}U_n \le \mathbb{E}(X_n-a)^+ - \mathbb{E}(X_0-a)^+$$

where x^+ denotes the positive part of x, so $x^+ := \max\{x, 0\}$.

Use this to show the martingale convergence theorem, saying that if X_n is a submartingale such that $\mathbb{E}X_n^+ \leq K$ with the same $K < \infty$ for every n, then X_n is almost surely convergent.

("Show" means: sketch the proof.)

Solution: First fix some a < b. Then U_n is clearly nondecreasing, so it surely converges to some U_{∞} , which is the number of upcrossing during the entire history of the process – the only question is whether U_{∞} is finite or not. But the upcrossing inequality and the assumption $\mathbb{E}X_n^+ \leq K$ ensure that

$$\mathbb{E}U_n \le \frac{const + K}{b - a} = K' < \infty$$

for every n, so the monotone convergence theorem makes sure that $\mathbb{E}U_{\infty} \leq K' < \infty$. As an easy consequence, U_{∞} is almost surely finite. So for any a < b

$$\mathbb{P}(\{\liminf_{n} X_{n} \le a \text{ but } \limsup_{n} X_{n} \ge b\}) = 0.$$

Using σ -additivity, we get that

$$\mathbb{P}(\{\exists a, b \in \mathbb{Q} \mid a < b \text{ and } \liminf_{n} X_n \le a \text{ but } \limsup_{n} X_n \ge b\}) = 0.$$

This implies

$$\mathbb{P}(\liminf_{n} X_n < \limsup_{n} X_n) = 0,$$

so X_n almost surely converges to some $X_{\infty} = \liminf_n X_n = \limsup_n X_n$.

(Remark: the martingale convergence theorem also states that X_{∞} is almost surely finite and even $\mathbb{E}|X_{\infty}| < \infty$. Checking these takes a few more arguments.)

6. Consider a bag which initially contains two pieces of paper: one red and one blue. At each time step n = 1, 2, ... we pick a piece of paper totally at random (meaning: uniformly, and independently of the past) from the bag, *cut it into two*, and put *both pieces back*. (So after n steps we have 2 + n pieces, out of which at least 1 is red and at least 1 is blue.)

Let X_n denote the number of red pieces after *n* steps, and let $Z_n := \frac{X_n}{n+2}$ be the proportion of red pieces to the total.

- a.) Show that Z_n is a martingale.
- b.) Show that Z_n converges almost surely to some limit Z_{∞} .
- c.) (Bonus:) What is the distribution of Z_{∞} ?

(Remark: this is the simplest case of Pólya's urn model.)

Solution: If at some time *n* there are n + 2 pieces in the bag and $X_n = k$ of these are red, then the probability of getting k + 1 red pieces in the next step is $\frac{k}{n+2}$, independently of what happened before. (Conditioned, of course, on having k red pieces). With the remaining probability $1 - \frac{k}{n+2}$, the number of red pieces stays k. So if \mathcal{F}_n is the natural filtration, then

$$\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = \frac{k}{n+2}(k+1) + \left(1 - \frac{k}{n+2}\right)k = \frac{n+3}{n+2}k \quad \text{on the event } \{X_n = k\}.$$

In other words,

$$\mathbb{E}(X_{n+1} \,|\, \mathcal{F}_n) = \frac{n+3}{n+2} X_n.$$

a.) $0 \leq Z_n \leq 1$, so Z_n is clearly integrable. Since the exercise mentions no filtration, we consider the natural filtration, so Z_n is also adapted for free. The martingale property follows from the previous calculation:

$$\mathbb{E}(Z_{n+1} \,|\, \mathcal{F}_n) = \frac{1}{n+3} \mathbb{E}(X_{n+1} \,|\, \mathcal{F}_n) = \frac{1}{n+2} X_n = Z_n.$$

- b.) Z_n is bounded by 1, so $\mathbb{E}(Z_n^+)$ is also bounded by 1 and the martingale convergence theorem ensures that Z_n converges.
- c.) (Bonus:) The possible values for X_n are $\{1, 2, ..., n + 1\}$. Looking at the first few steps, one can see that these are taken with equal probabilities $\frac{1}{n+1}$. Then this can be shown for all n by induction. As a result, Z_n is uniformly distributed on the finite set $\{\frac{1}{n+2}, \frac{2}{n+2}, \ldots, \frac{n+1}{n+2}\}$. This implies that $Z_n \Rightarrow Uni([0,1])$ weakly, where Uni([0,1]) is the (continuous) uniform distribution on the [0,1] interval. But $Z_n \to Z_\infty$ strongly, so $Z_n \Rightarrow Z_\infty$ weakly as well. Since the weak limit is unique, we must have $Z_\infty \sim Uni([0,1])$.