Probability 1

CEU Budapest, fall semester 2015

Imre Péter Tóth

Final exam, 11.12.2015, solutions

Working time: 150 minutes
Every question is worth 10 points.

1. a.) Calculate the characteristic function of a random variable X which has geometric distribution with parameter p, meaning $\mathbb{P}(X=k)=(1-p)^{k-1} p$, for $k=1,2, \ldots$.
b.) Calculate the characteristic function of the exponential distribution with rate λ - that is, the distribution with density

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { if not. }\end{cases}
$$

c.) Use the method of characteristic functions to show that if $Y_{n} \sim \operatorname{Geom}\left(\frac{1}{n}\right)$, then $\frac{1}{n} Y_{n} \Rightarrow$ $\operatorname{Exp}(1)$.

Solution:

a.) With the notation $q:=1-p$, using the summability of geometric series

$$
\Psi_{G e o m(p)}(t)=\mathbb{E}\left(e^{i t X}\right)=\sum_{k=1}^{\infty} \mathbb{P}(X=k) e^{i t k}=\sum_{k=1}^{\infty} q^{k-1} p e^{i t k}=p e^{i t} \sum_{l=0}^{\infty}\left(q e^{i t}\right)^{k}=\frac{p e^{i t}}{1-q e^{i t}} .
$$

b.) Let $Y \sim \operatorname{Exp}(\lambda)$. Then, using that for any $t \in \mathbb{R} \operatorname{Re}($ it $-\lambda)<0$

$$
\begin{aligned}
\Psi_{\operatorname{Exp}(\lambda)}(t) & =\mathbb{E}\left(e^{i t Y}\right)=\int_{-\infty}^{\infty} f(x) e^{i t x} \mathrm{~d} x=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{i t x} \mathrm{~d} x=\lambda \int_{0}^{\infty} e^{(i t-\lambda) x} \mathrm{~d} x= \\
& =\lambda\left[\frac{e^{(i t-\lambda) x}}{i t-\lambda}\right]_{0}^{\infty}=\frac{\lambda}{i t-\lambda}(0-1)=\frac{\lambda}{\lambda-i t} .
\end{aligned}
$$

c.) Let $Z_{n}=\frac{1}{n} Y_{n}$. The characteristic function of this, using part a.) is

$$
\Psi_{Z_{n}}(t)=\mathbb{E}\left(e^{-i t \frac{Y_{n}}{n}}\right)=\Psi_{Y_{n}}\left(\frac{t}{n}\right)=\Psi_{\operatorname{Geom}(1 / n)}\left(\frac{t}{n}\right)=\frac{\frac{1}{n} e^{i \frac{t}{n}}}{1-\left(1-\frac{1}{n}\right) e^{i \frac{t}{n}}}
$$

Since we want to calculate the limit as $n \rightarrow \infty$, it is nice to write this as

$$
\Psi_{Z_{n}}(t)=\frac{e^{i \frac{t}{n}}}{n\left(1-e^{i \frac{t}{n}}\right)+e^{i \frac{t}{n}}}=\frac{e^{i \frac{t}{n}}}{e^{i \frac{t}{n}}-\frac{e^{i t \frac{1}{n}}-e^{i t 0}}{\frac{1}{n}}} .
$$

Now if $n \rightarrow \infty$, then $e^{i \frac{t}{n}} \rightarrow 1$ and $\left.\frac{e^{i t \frac{1}{n}}-e^{i t 0}}{\frac{1}{n}} \rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x} e^{i t x}\right|_{x=0}=i t$ by the definition of the derivative, so for any $t \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} \Psi_{Z_{n}}(t)=\frac{1}{1-i t}=\Psi_{\operatorname{Exp}(1)}(t) .
$$

Now the continuity theorem implies that $Z_{n} \Rightarrow \operatorname{Exp}(1)$.
2. Let X_{1}, X_{2}, \ldots be independent, but not identically distributed random variables: $X_{i} \sim$ $B\left(\frac{1}{3}\right)$ if i is odd and $X_{i} \sim B\left(\frac{2}{3}\right)$ if i is even. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Show that $\frac{S_{n}}{n}$ is almost surely convergent.
Solution: The easiest solution is to calculate the sum in groups of two. Indeed, if $Y_{i}=$ $X_{2 i-1}+X_{2 i}$, then

$$
Y_{1}+Y_{2}+\cdots+Y_{k}=X_{1}+X_{2}+\cdots+X_{2 k},
$$

and the Y_{i} are not only independent, but also identically distributed with common expectation $m=\mathbb{E} Y_{1}=\mathbb{E} X_{1}+\mathbb{E} X_{2}=\frac{1}{3}+\frac{2}{3}=1$. So for $n=2 k$ even, the strong law of large numbers gives the result for free:

$$
\frac{1}{n} S_{n}=\frac{Y_{1}+\cdots+Y_{k}}{2 k}=\frac{1}{2} \frac{Y_{1}+\cdots+Y_{k}}{k} \rightarrow \frac{1}{2} m=\frac{1}{2}
$$

almost surely.
For $n=2 k+1$ odd, we use that the last term without a pair is negligible. Indeed, $\frac{1}{n}\left|S_{2 k+1}-S_{2 k}\right|=\frac{1}{n}\left|X_{2 k+1}\right| \leq \frac{1}{n}$, so

$$
\lim _{k \rightarrow \infty} \frac{S_{2 k+1}}{2 k+1}=\lim _{k \rightarrow \infty} \frac{S_{2 k}}{2 k+1}=\lim _{k \rightarrow \infty} \frac{2 k}{2 k+1} \frac{S_{2 k}}{2 k}=1 \cdot \frac{1}{2}
$$

almost surely as well.
3. A frog performs a discrete time "lazy" symmetric random walk on the integer lattice \mathbb{Z} with time-dependent jump probabilities: in the i th time step it jumps one step down with probability $\frac{p_{i}}{2}$, it jumps one step up with probability $\frac{p_{i}}{2}$, and stays where it was with the remaining probability $q_{i}=1-p_{i}$, independently of what happened before. The frog is getting tired: $p_{i}=\frac{1}{2^{2}}$. Let S_{n} be the position of the frog after n time steps. Show that S_{n} is almost surely convergent.
Solution: Let A_{i} be the event that in the i th tsep the frog does jump, and doesn't stay where it was. Then $\mathbb{P}\left(A_{i}\right)=p_{i}=\frac{1}{2^{i}}$, so $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)<\infty$, and the first Borel-Cantelli lemma ensures that almost surely only finitely many A_{i} occur. So, almost surely, the frog never jumps after a while, and its position stays constant (implying that it is convergent).
4. Use the definition of conditional expectation to show that if $\mathbb{E}|X|<\infty$ and \mathcal{G} is a sub- σ algebra of \mathcal{F}, then $\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}) \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{G})$.
Solution: Set $Y:=\mathbb{E}(X \mid \mathcal{F})$ and $Z:=\mathbb{E}(X \mid \mathcal{G})$. We need to show that Z satisfies the definition of $\mathbb{E}(Y \mid \mathcal{G})$:

- Z is integrable, because it is by definition a conditional expectation.
- Z is \mathcal{G}-measurable, because it is by definition a conditional expectation w.r.t. \mathcal{G}.
- For any $A \in \mathcal{G}, \int_{A} Y d \mathbb{P}=\int_{A} Z d \mathbb{P}$, because both are equal to $\int_{A} X d \mathbb{P}$. Indeed, $\int_{A} Z \mathrm{dP}=\int_{A} X \mathrm{dP}$ by the definition of $Z=\mathbb{E}(X \mid \mathcal{G})$. For the other half, we have to use that $\mathcal{G} \subset \mathcal{F}$, so $A \in \mathcal{F}$ as well, and the definition of $Y=\mathbb{E}(X \mid \mathcal{F})$ ensures that $\int_{A} Y d \mathbb{P}=\int_{A} X d \mathbb{P}$.

5. Let X_{n} be a submartingale, $a<b$ reals and let U_{n} show how many times the trajectory of X_{n} has "crossed" the interval (a,b) from below to above up to time n. The upcrossing inequality says that

$$
(b-a) \mathbb{E} U_{n} \leq \mathbb{E}\left(X_{n}-a\right)^{+}-\mathbb{E}\left(X_{0}-a\right)^{+}
$$

where x^{+}denotes the positive part of x, so $x^{+}:=\max \{x, 0\}$.
Use this to show the martingale convergence theorem, saying that if X_{n} is a submartingale such that $\mathbb{E} X_{n}^{+} \leq K$ with the same $K<\infty$ for every n, then X_{n} is almost surely convergent.

("Show" means: sketch the proof.)

Solution: First fix some $a<b$. Then U_{n} is clearly nondecreasing, so it surely converges to some U_{∞}, which is the number of upcrossing during the entire history of the process the only question is whether U_{∞} is finite or not. But the upcrossing inequality and the assumption $\mathbb{E} X_{n}^{+} \leq K$ ensure that

$$
\mathbb{E} U_{n} \leq \frac{\text { const }+K}{b-a}=K^{\prime}<\infty
$$

for every n, so the monotone convergence theorem makes sure that $\mathbb{E} U_{\infty} \leq K^{\prime}<\infty$. As an easy consequence, U_{∞} is almost surely finite. So for any $a<b$

$$
\mathbb{P}\left(\left\{\liminf _{n} X_{n} \leq a \text { but } \underset{n}{\limsup } X_{n} \geq b\right\}\right)=0 .
$$

Using σ-additivity, we get that

$$
\mathbb{P}\left(\left\{\exists a, b \in \mathbb{Q} \mid a<b \text { and } \liminf _{n} X_{n} \leq a \text { but } \limsup _{n} X_{n} \geq b\right\}\right)=0 .
$$

This implies

$$
\mathbb{P}\left(\liminf _{n} X_{n}<\limsup _{n} X_{n}\right)=0
$$

so X_{n} almost surely converges to some $X_{\infty}=\liminf _{n} X_{n}=\limsup X_{n} X_{n}$.
(Remark: the martingale convergence theorem also states that X_{∞} is almost surely finite and even $\mathbb{E}\left|X_{\infty}\right|<\infty$. Checking these takes a few more arguments.)
6. Consider a bag which initially contains two pieces of paper: one red and one blue. At each time step $n=1,2, \ldots$ we pick a piece of paper totally at random (meaning: uniformly, and independently of the past) from the bag, cut it into two, and put both pieces back. (So after n steps we have $2+n$ pieces, out of which at least 1 is red and at least 1 is blue.)
Let X_{n} denote the number of red pieces after n steps, and let $Z_{n}:=\frac{X_{n}}{n+2}$ be the proportion of red pieces to the total.
a.) Show that Z_{n} is a martingale.
b.) Show that Z_{n} converges almost surely to some limit Z_{∞}.
c.) (Bonus:) What is the distribution of Z_{∞} ?
(Remark: this is the simplest case of Polya's urn model.)
Solution: If at some time n there are $n+2$ pieces in the bag and $X_{n}=k$ of these are red, then the probability of getting $k+1$ red pieces in the next step is $\frac{k}{n+2}$, independently of what happened before. (Conditioned, of course, on having k red pieces). With the remaining probability $1-\frac{k}{n+2}$, the number of red pieces stays k. So if \mathcal{F}_{n} is the natural filtration, then

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\frac{k}{n+2}(k+1)+\left(1-\frac{k}{n+2}\right) k=\frac{n+3}{n+2} k \quad \text { on the event }\left\{X_{n}=k\right\} .
$$

In other words,

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\frac{n+3}{n+2} X_{n} .
$$

a.) $0 \leq Z_{n} \leq 1$, so Z_{n} is clearly integrable. Since the exercise mentions no filtration, we consider the natural filtration, so Z_{n} is also adapted for free. The martingale property follows from the previous calculation:

$$
\mathbb{E}\left(Z_{n+1} \mid \mathcal{F}_{n}\right)=\frac{1}{n+3} \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\frac{1}{n+2} X_{n}=Z_{n}
$$

b.) Z_{n} is bounded by 1 , so $\mathbb{E}\left(Z_{n}^{+}\right)$is also bounded by 1 and the martingale convergence theorem ensures that Z_{n} converges.
c.) (Bonus:) The possible values for X_{n} are $\{1,2, \ldots, n+1\}$. Looking at the first few steps, one can see that these are taken with equal probabilities $\frac{1}{n+1}$. Then this can be shown for all n by induction. As a result, Z_{n} is uniformly distributed on the finite set $\left\{\frac{1}{n+2}, \frac{2}{n+2}, \ldots, \frac{n+1}{n+2}\right\}$. This implies that $Z_{n} \Rightarrow \operatorname{Uni}([0,1])$ weakly, where $\operatorname{Uni}([0,1])$ is the (continuous) uniform distribution on the $[0,1]$ interval. But $Z_{n} \rightarrow Z_{\infty}$ strongly, so $Z_{n} \Rightarrow Z_{\infty}$ weakly as well. Since the weak limit is unique, we must have $Z_{\infty} \sim$ $\operatorname{Uni}([0,1])$.

