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Final exam, 11.12.2015, solutions

Working time: 150 minutes
Every question is worth 10 points.

1. a.) Calculate the characteristic function of a random variable X which has geometric
distribution with parameter p, meaning P(X = k) = (1− p)k−1p, for k = 1, 2, . . . .

b.) Calculate the characteristic function of the exponential distribution with rate λ – that
is, the distribution with density

f(x) =

{

λe−λx, if x ≥ 0

0, if not.

c.) Use the method of characteristic functions to show that if Yn ∼ Geom( 1
n
), then 1

n
Yn ⇒

Exp(1).

Solution:

a.) With the notation q := 1− p, using the summability of geometric series

ΨGeom(p)(t) = E(eitX) =
∞
∑

k=1

P(X = k)eitk =
∞
∑

k=1

qk−1peitk = peit
∞
∑

l=0

(

qeit
)k

=
peit

1− qeit
.

b.) Let Y ∼ Exp(λ). Then, using that for any t ∈ R Re(it− λ) < 0

ΨExp(λ)(t) = E(eitY ) =

∫

∞

−∞

f(x)eitx dx =

∫

∞

0

λe−λxeitx dx = λ

∫

∞

0

e(it−λ)x dx =

= λ

[

e(it−λ)x

it− λ

]∞

0

=
λ

it− λ
(0− 1) =

λ

λ− it
.

c.) Let Zn = 1
n
Yn. The characteristic function of this, using part a.) is

ΨZn
(t) = E

(

e−itYn
n

)

= ΨYn

(

t

n

)

= ΨGeom(1/n)

(

t

n

)

=
1
n
ei

t

n

1−
(

1− 1
n

)

ei
t

n

.

Since we want to calculate the limit as n → ∞, it is nice to write this as

ΨZn
(t) =

ei
t

n

n
(

1− ei
t

n

)

+ ei
t

n

=
ei

t

n

ei
t

n − eit
1
n−eit0

1

n

.

Now if n → ∞, then ei
t

n → 1 and eit
1
n−eit0

1

n

→ d
dx
eitx |x=0= it by the definition of the

derivative, so for any t ∈ R

lim
n→∞

ΨZn
(t) =

1

1− it
= ΨExp(1)(t).

Now the continuity theorem implies that Zn ⇒ Exp(1).



2. Let X1, X2, . . . be independent, but not identically distributed random variables: Xi ∼
B(1

3
) if i is odd and Xi ∼ B(2

3
) if i is even. Let Sn = X1 +X2 + · · ·+Xn. Show that Sn

n

is almost surely convergent.

Solution: The easiest solution is to calculate the sum in groups of two. Indeed, if Yi =
X2i−1 +X2i, then

Y1 + Y2 + · · ·+ Yk = X1 +X2 + · · ·+X2k,

and the Yi are not only independent, but also identically distributed with common expec-
tation m = EY1 = EX1 + EX2 = 1

3
+ 2

3
= 1. So for n = 2k even, the strong law of large

numbers gives the result for free:

1

n
Sn =

Y1 + · · ·+ Yk

2k
=

1

2

Y1 + · · ·+ Yk

k
→

1

2
m =

1

2

almost surely.

For n = 2k + 1 odd, we use that the last term without a pair is negligible. Indeed,
1
n
|S2k+1 − S2k| =

1
n
|X2k+1| ≤

1
n
, so

lim
k→∞

S2k+1

2k + 1
= lim

k→∞

S2k

2k + 1
= lim

k→∞

2k

2k + 1

S2k

2k
= 1 ·

1

2

almost surely as well.

3. A frog performs a discrete time “lazy” symmetric random walk on the integer lattice Z

with time-dependent jump probabilities: in the ith time step it jumps one step down with
probability pi

2
, it jumps one step up with probability pi

2
, and stays where it was with the

remaining probability qi = 1 − pi, independently of what happened before. The frog is
getting tired: pi =

1
2i
. Let Sn be the position of the frog after n time steps. Show that Sn

is almost surely convergent.

Solution: Let Ai be the event that in the ith tsep the frog does jump, and doesn’t stay
where it was. Then P(Ai) = pi = 1

2i
, so

∑

∞

i=1 P(Ai) < ∞, and the first Borel-Cantelli
lemma ensures that almost surely only finitely many Ai occur. So, almost surely, the frog
never jumps after a while, and its position stays constant (implying that it is convergent).

4. Use the definition of conditional expectation to show that if E|X| < ∞ and G is a sub-σ-
algebra of F , then E(E(X | F) | G) = E(X | G).

Solution: Set Y := E(X | F) and Z := E(X | G). We need to show that Z satisfies the
definition of E(Y | G):

• Z is integrable, because it is by definition a conditional expectation.

• Z is G-measurable, because it is by definition a conditional expectation w.r.t. G.

• For any A ∈ G,
∫

A
Y dP =

∫

A
Z dP, because both are equal to

∫

A
X dP. Indeed,

∫

A
Z dP =

∫

A
X dP by the definition of Z = E(X | G). For the other half, we have to

use that G ⊂ F , so A ∈ F as well, and the definition of Y = E(X | F) ensures that
∫

A
Y dP =

∫

A
X dP.

5. Let Xn be a submartingale, a < b reals and let Un show how many times the trajectory
of Xn has “crossed” the interval (a,b) from below to above up to time n. The upcrossing
inequality says that

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+

where x+ denotes the positive part of x, so x+ := max{x, 0}.

Use this to show the martingale convergence theorem, saying that if Xn is a submartingale
such that EX+

n ≤ K with the sameK < ∞ for every n, thenXn is almost surely convergent.
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(“Show” means: sketch the proof.)

Solution: First fix some a < b. Then Un is clearly nondecreasing, so it surely converges
to some U∞, which is the number of upcrossing during the entire history of the process –
the only question is whether U∞ is finite or not. But the upcrossing inequality and the
assumption EX+

n ≤ K ensure that

EUn ≤
const +K

b− a
= K ′ < ∞

for every n, so the monotone convergence theorem makes sure that EU∞ ≤ K ′ < ∞. As
an easy consequence, U∞ is almost surely finite. So for any a < b

P({lim inf
n

Xn ≤ a but lim sup
n

Xn ≥ b}) = 0.

Using σ-additivity, we get that

P({∃a, b ∈ Q | a < b and lim inf
n

Xn ≤ a but lim sup
n

Xn ≥ b}) = 0.

This implies
P(lim inf

n
Xn < lim sup

n
Xn) = 0,

so Xn almost surely converges to some X∞ = lim infnXn = lim supn Xn.

(Remark: the martingale convergence theorem also states that X∞ is almost surely finite
and even E|X∞| < ∞. Checking these takes a few more arguments.)

6. Consider a bag which initially contains two pieces of paper: one red and one blue. At each
time step n = 1, 2, . . . we pick a piece of paper totally at random (meaning: uniformly,
and independently of the past) from the bag, cut it into two, and put both pieces back. (So
after n steps we have 2 + n pieces, out of which at least 1 is red and at least 1 is blue.)

Let Xn denote the number of red pieces after n steps, and let Zn := Xn

n+2
be the proportion

of red pieces to the total.

a.) Show that Zn is a martingale.

b.) Show that Zn converges almost surely to some limit Z∞.

c.) (Bonus:) What is the distribution of Z∞?

(Remark: this is the simplest case of Pólya’s urn model.)

Solution: If at some time n there are n + 2 pieces in the bag and Xn = k of these are
red, then the probability of getting k + 1 red pieces in the next step is k

n+2
, independently

of what happened before. (Conditioned, of course, on having k red pieces). With the
remaining probability 1 − k

n+2
, the number of red pieces stays k. So if Fn is the natural

filtration, then

E(Xn+1 | Fn) =
k

n+ 2
(k + 1) +

(

1−
k

n+ 2

)

k =
n+ 3

n+ 2
k on the event {Xn = k}.

In other words,

E(Xn+1 | Fn) =
n+ 3

n+ 2
Xn.

a.) 0 ≤ Zn ≤ 1, so Zn is clearly integrable. Since the exercise mentions no filtration, we
consider the natural filtration, so Zn is also adapted for free. The martingale property
follows from the previous calculation:

E(Zn+1 | Fn) =
1

n + 3
E(Xn+1 | Fn) =

1

n + 2
Xn = Zn.
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b.) Zn is bounded by 1, so E(Z+
n ) is also bounded by 1 and the martingale convergence

theorem ensures that Zn converges.

c.) (Bonus:) The possible values for Xn are {1, 2, . . . , n + 1}. Looking at the first few
steps, one can see that these are taken with equal probabilities 1

n+1
. Then this can

be shown for all n by induction. As a result, Zn is uniformly distributed on the finite
set { 1

n+2
, 2
n+2

, . . . , n+1
n+2

}. This implies that Zn ⇒ Uni([0, 1]) weakly, where Uni([0, 1])
is the (continuous) uniform distribution on the [0, 1] interval. But Zn → Z∞ strongly,
so Zn ⇒ Z∞ weakly as well. Since the weak limit is unique, we must have Z∞ ∼
Uni([0, 1]).
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