Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Midterm exam, 06.11.2015 Working time: 90 minutes Every question is worth 10 points. Maximum total score: 30.

- 1. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = [0, 1]$, \mathcal{F} the Borel σ -algebra and \mathbb{P} the Lebesgue measure on [0, 1] (restricted to \mathcal{F}). Show an explicit example of a sequence X_n of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $X_n \to 0$ almost surely but $\mathbb{E}X_n \to \infty$.
- 2. Let the random variable X have Cauchy distribution: the density (w.r.t. Lebesgue measure) is $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. For every $n \in \mathbb{N}$ let $X_n = \frac{1}{n} X_n$.
 - a.) Find the weak limit of X_n .
 - b.) Calculate $\lim_{n\to\infty} \mathbb{E}\left(e^{iX_n^2}\right)$.
 - c.) Calculate $\lim_{n\to\infty} \mathbb{E}(X_n^2)$.
- 3. Let $X_n \sim Poi(n)$ and $Y_n := \frac{X_n n}{\sqrt{n}}$.
 - a.) Calculate the characteristic function of X_n .
 - b.) Calculate the characteristic function of Y_n .
 - c.) Show that $Y_n \Rightarrow \mathcal{N}(0,1)$. (Hint: if x is small, then $e^x \approx 1 + x + \frac{x^2}{2}$.)
- 4. a.) Let X_1, X_2, \ldots be independent exponentially distributed random variables with parameter 1. Let $M_n = max\{X_1, \ldots, X_n\}$. Show that $Y_n := M_n \ln n$ has a weak limit and find the distribution function of the limit.
 - b.) Bob buys a sample of n = 5184705528587072464087 radiactive nuclei, which all decay with a half-life of $T_{1/2} = 0.693$ hours. Calculate the (approximate) probability that after 51 hours he still has at least one nucleus left. (Hint: $n \approx e^{50}$ and $T \approx \ln(2)$.)