
Probability 1
CEU Budapest, fall semester 2015

Imre Péter Tóth
Homework sheet 3 – due on 01.12.2015 – solutions of the homeworks

3.1 Let X1, X2, . . . be independent random variables such that Xk can only take that values −1
and k2 − 1, with the probabilities P(Xk = k2 − 1) = 1

k2
and P(Xk = −1) = 1 − 1

k2
. Let

Sn = X1 +X2 + · · ·+Xn.

a.) Calculate EXk and ESn.

b.) Show that Sn

n
→ −1 almost surely.

3.2 (homework) Let X1, X2, . . . , Xn be i.i.d. random variables. Prove that the following two
statements are equivalent:

(i) E|Xi| < ∞.

(ii) P(|Xn| > n for infinitely many n-s) = 0.

Solution: The key observation is that for a nonnegative integer valued random variable Y ,
we have EY =

∑∞
k=1

P(Y ≥ k) =
∑∞

n=0
P(Y > n). So for the random varibale |X|, which

is nonnegative but not necessarily integer, the error of such an approximation is at most 1
(choosing, say, Y to be the integer part of X):
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in particular E|X| < ∞ if and only if
∑∞

n=0
P(|X| > n) < ∞. Now define the events An :=

{|Xn| > n} with probabilities pn := P(An) = P(|Xn| > n). These An are independent, so
the two Borel-Cantelli lemmas say exactly that P(infinitely many occur) = 0 if and only if
∑∞

n=0
pn < ∞, which is equivalent to E|X| < ∞.

3.3 Prove that for any sequence X1, X2, . . . of random variables (real valued, defined on the same
probability space) there exists a sequence c1, c2, . . . of numbers such that

Xn

cn
→ 0 almost surely.

3.4 (homework) Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same
probability space. Prove that the following two statements are equivalent:

(i) Xn → X in probability as n → ∞.

(ii) From every subsequence {nk}
∞
k=1

a sub-subsequence {nkj}
∞
j=1

can be chosen such that
Xnkj

→ X almost surely as j → ∞.

Solution:

a.) If Xn → X in probability, then Xnk
→ X in probability as well, so for any ε > 0 if k is

big enough, then P(|Xnk
− X| > ε) is as small as we want. In particular, for each j let

εj =
1

j
and choose kj so big that P(|Xnkj

−X| > εj =
1

j
) ≤ 1

2j
, which ensures – via the first

Borel-Cantelli lemma – that the disaster |Xnkj
− X| > 1

j
happens at most finitely many

times, with probability one. This implies |Xnkj
−X| → 0.
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b.) If Xn 9 X in probability, then there are ε > 0, δ > 0 and a subsequence nk such that

for every k we have P(|Xnk
−X| > ε) ≥ δ. (1)

Now if, from this subsequence nk, we could choose a sub-subsequence nkj such that Xnkj
→

X almost surely, then Xnkj
→ X in probability as well, which contradicts (1).

3.5 Let X1, X2, . . . be independent such that Xn has Bernoulli(pn) distribution. Determine what
property the sequence pn has to satisfy so that

(a) Xn → X in probability as n → ∞

(b) Xn → X almost surely as n → ∞.

3.6 Let X1, X2, . . . be independent random variables. Show that P(supnXn < ∞) = 1 if and only
if there is some A ∈ R for which

∑∞
n=1

P(Xn > A) < ∞.

3.7 (homework) Let X1, X2, . . . be independent exponentially distributed random variables such
that Xn has parameter λn. Let Sn :=

∑n

i=1
Xi. Show that if

∑∞
n=1

1

λn
= ∞, then Sn → ∞

almost surely, but if
∑∞

n=1

1

λn
< ∞, then Sn → S almost surely, where S is some random

variable which is almost surely finite. (Hint: the second part is easy. For the first part, a
possible solution is to let xi be such that P(Xi ≥ xi) =

1

2
, Yi := xi1{Xi≥xi}, Zi := xi − Yi and

use that Sn ≥
∑n

i=1
Yi.)

Solution: Xi ≥ 0 for every i, so the sum S :=
∑∞

i=1
Xi = as limn→∞ Sn always exists – the

only question is whether it is finite or not.

The easy second part:

ES =

∞
∑

i=1

EXi =

∞
∑

i=1

1

λi

(by the monotone convergence theorem), so if
∑∞

n=1

1

λn
< ∞, then ES < ∞, so S has to be

almost surely finite.

To see the first part, assume
∑∞

i=1

1

λi
= ∞. The xi defined in the hint are the half-lives xi =

ln 2

λi
.

The Yi satisfy 0 ≤ Yi ≤ Xi, so U :=
∑∞

i=1
exists as well, and S ≥ U . It is enought to see that

U = ∞ almost surely.

Now here comes the hard part: The issue of “the infinite sum being convergent of not” can be
decided without knowing the first n elements of the sequence, for every n – so this property
depends only on the “tail” of the sequence – thus, as the Yi are independent, the event {U = ∞}
is independent of all of them, and this can only happen so that P(U = ∞) is either 0 or 1.
(The precise formulation of this observation is called the Kolmogorov 0-1 law.)

Now that we know that U is either almost surely infinite or almost surely finite, here comes the
trick: Set V =

∑∞
i=1

Zi with Zi =
ln 2

λi
−Yi. The Yi are so cleverly constructed that Yi and Zi are

identically distributed, so U and V are also identically distributed. But U+V =
∑∞

i=1

ln 2

λi
= ∞,

so U and V cannot be almost surely finite.

Together with the previous argument, this gives P(U = ∞) = 1, so P(S = ∞) = 1.

3.8 Let X1, X2, . . . be i.i.d. random variables with distribution Bernoulli(p) for some p ∈ (0; 1) but
p 6= 1

2
. Let Y :=

∑∞
n=1

2−nXn. (The sum is absolutely convergent.) Show that the distribution
of Y is continuous, but singular w.r.t. Lebesgue measure.
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3.9 Let the random variables X1, X2, . . . , Xn, . . . and X be defined on the same probability space
and suppose that Xn → X in probability as n → ∞.

(a) If f : R → R is a continuous function, Yn = f(Xn) and Y = f(X), show that Yn → Y in
probability as n → ∞.

(b) Show that if the Xn are almost surely uniformly bounded [that is: there exists a constant
M < ∞ such that P(∀n ∈ N |Xn| ≤ M) = 1], then limn→∞ EXn = EX .

(c) Show, through an example, that for the previous statement, tha condition of boundedness
is needed.

3.10 Let the random variables X1, X2, . . . , Y1, Y2, . . . , X and Y be defined on the same probability
space and assume that Xn → X and Yn → Y in probability. Show that

(a) XnYn → XY in probability.

(b) If almost surely Yn 6= 0 and Y 6= 0, then Xn/Yn → X/Y in probability.

3.11 (homework) Let the random variables X1, X2, . . . , Xn, . . . be defined on the same probability
space and let Yn := supm≥n |Xm|. Prove that the following two statements are equivalent:

(i) Xn → 0 almost surely as n → ∞.

(ii) Yn → 0 in probability as n → ∞.

Solution: For any sequence of numbers an, if we set bn := supm≥n |am|, then we get bn → 0
if and only if an → 0. Moreover, bn is automatically monotone decreasing. So the events
{Yn → 0} and {Xn → 0} are the same, so Xn → 0 almost surely if and only if Yn → 0 almost
surely. This of course implies that Yn → 0 in probability.

Now since Yn is monotone decreasing, convergence to 0 in probability also implies convergence
to 0 almost surely: if there were a set of positive measure where Yn 9 0, then on some (possibly
smaller) positive measure set Yn would stay bigger than some ε > 0 for ever, which contradicts
convergence in probability.
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