Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth

Homework sheet 3 – due on 01.12.2015 – solutions of the homeworks

- 3.1 Let X_1, X_2, \ldots be independent random variables such that X_k can only take that values -1and $k^2 - 1$, with the probabilities $\mathbb{P}(X_k = k^2 - 1) = \frac{1}{k^2}$ and $\mathbb{P}(X_k = -1) = 1 - \frac{1}{k^2}$. Let $S_n = X_1 + X_2 + \cdots + X_n$.
 - a.) Calculate $\mathbb{E}X_k$ and $\mathbb{E}S_n$.
 - b.) Show that $\frac{S_n}{n} \to -1$ almost surely.
- 3.2 (homework) Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n-s) = 0.$

Solution: The key observation is that for a nonnegative integer valued random variable Y, we have $\mathbb{E}Y = \sum_{k=1}^{\infty} \mathbb{P}(Y \ge k) = \sum_{n=0}^{\infty} \mathbb{P}(Y > n)$. So for the random variable |X|, which is nonnegative but not necessarily integer, the error of such an approximation is at most 1 (choosing, say, Y to be the integer part of X):

$$\left|\mathbb{E}|X| - \sum_{n=0}^{\infty} \mathbb{P}(|X| > n)\right| \le 1,$$

in particular $\mathbb{E}|X| < \infty$ if and only if $\sum_{n=0}^{\infty} \mathbb{P}(|X| > n) < \infty$. Now define the events $A_n := \{|X_n| > n\}$ with probabilities $p_n := \mathbb{P}(A_n) = \mathbb{P}(|X_n| > n)$. These A_n are independent, so the two Borel-Cantelli lemmas say exactly that $\mathbb{P}(\text{infinitely many occur}) = 0$ if and only if $\sum_{n=0}^{\infty} p_n < \infty$, which is equivalent to $\mathbb{E}|X| < \infty$.

3.3 Prove that for any sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0 \text{ almost surely.}$$

- 3.4 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.

Solution:

a.) If $X_n \to X$ in probability, then $X_{n_k} \to X$ in probability as well, so for any $\varepsilon > 0$ if k is big enough, then $\mathbb{P}(|X_{n_k} - X| > \varepsilon)$ is as small as we want. In particular, for each j let $\varepsilon_j = \frac{1}{j}$ and choose k_j so big that $\mathbb{P}(|X_{n_{k_j}} - X| > \varepsilon_j = \frac{1}{j}) \leq \frac{1}{2^j}$, which ensures – via the first Borel-Cantelli lemma – that the disaster $|X_{n_{k_j}} - X| > \frac{1}{j}$ happens at most finitely many times, with probability one. This implies $|X_{n_{k_j}} - X| \to 0$. b.) If $X_n \to X$ in probability, then there are $\varepsilon > 0, \delta > 0$ and a subsequence n_k such that

for every k we have
$$\mathbb{P}(|X_{n_k} - X| > \varepsilon) \ge \delta.$$
 (1)

Now if, from this subsequence n_k , we could choose a sub-subsequence n_{k_j} such that $X_{n_{k_j}} \to X$ almost surely, then $X_{n_{k_j}} \to X$ in probability as well, which contradicts (1).

- 3.5 Let X_1, X_2, \ldots be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that
 - (a) $X_n \to X$ in probability as $n \to \infty$
 - (b) $X_n \to X$ almost surely as $n \to \infty$.
- 3.6 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.7 (homework) Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite. (*Hint: the second part is easy. For the first part, a possible solution is to let* x_i *be such that* $\mathbb{P}(X_i \ge x_i) = \frac{1}{2}$, $Y_i := x_i \mathbf{1}_{\{X_i \ge x_i\}}$, $Z_i := x_i - Y_i$ and use that $S_n \ge \sum_{i=1}^n Y_i$.)

Solution: $X_i \ge 0$ for every *i*, so the sum $S := \sum_{i=1}^{\infty} X_i = as \lim_{n\to\infty} S_n$ always exists – the only question is whether it is finite or not.

The easy second part:

$$\mathbb{E}S = \sum_{i=1}^{\infty} \mathbb{E}X_i = \sum_{i=1}^{\infty} \frac{1}{\lambda_i}$$

(by the monotone convergence theorem), so if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $\mathbb{E}S < \infty$, so S has to be almost surely finite.

To see the first part, assume $\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \infty$. The x_i defined in the hint are the half-lives $x_i = \frac{\ln 2}{\lambda_i}$. The Y_i satisfy $0 \le Y_i \le X_i$, so $U := \sum_{i=1}^{\infty}$ exists as well, and $S \ge U$. It is enought to see that $U = \infty$ almost surely.

Now here comes the hard part: The issue of "the infinite sum being convergent of not" can be decided without knowing the first n elements of the sequence, for every n – so this property depends only on the "tail" of the sequence – thus, as the Y_i are independent, the event $\{U = \infty\}$ is independent of all of them, and this can only happen so that $\mathbb{P}(U = \infty)$ is either 0 or 1. (The precise formulation of this observation is called the *Kolmogorov 0-1 law*.)

Now that we know that U is either almost surely infinite or almost surely finite, here comes the trick: Set $V = \sum_{i=1}^{\infty} Z_i$ with $Z_i = \frac{\ln 2}{\lambda_i} - Y_i$. The Y_i are so cleverly constructed that Y_i and Z_i are identically distributed, so U and V are also identically distributed. But $U + V = \sum_{i=1}^{\infty} \frac{\ln 2}{\lambda_i} = \infty$, so U and V cannot be almost surely finite.

Together with the previous argument, this gives $\mathbb{P}(U = \infty) = 1$, so $\mathbb{P}(S = \infty) = 1$.

3.8 Let X_1, X_2, \ldots be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0; 1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.

- 3.9 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space and suppose that $X_n \to X$ in probability as $n \to \infty$.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, $Y_n = f(X_n)$ and Y = f(X), show that $Y_n \to Y$ in probability as $n \to \infty$.
 - (b) Show that if the X_n are almost surely uniformly bounded [that is: there exists a constant $M < \infty$ such that $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1$], then $\lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X$.
 - (c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
- 3.10 Let the random variables $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$ and Y be defined on the same probability space and assume that $X_n \to X$ and $Y_n \to Y$ in probability. Show that
 - (a) $X_n Y_n \to XY$ in probability.
 - (b) If almost surely $Y_n \neq 0$ and $Y \neq 0$, then $X_n/Y_n \rightarrow X/Y$ in probability.
- 3.11 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ be defined on the same probability space and let $Y_n := \sup_{m>n} |X_m|$. Prove that the following two statements are equivalent:
 - (i) $X_n \to 0$ almost surely as $n \to \infty$.
 - (ii) $Y_n \to 0$ in probability as $n \to \infty$.

Solution: For any sequence of numbers a_n , if we set $b_n := \sup_{m \ge n} |a_m|$, then we get $b_n \to 0$ if and only if $a_n \to 0$. Moreover, b_n is automatically monotone decreasing. So the events $\{Y_n \to 0\}$ and $\{X_n \to 0\}$ are the same, so $X_n \to 0$ almost surely if and only if $Y_n \to 0$ almost surely. This of course implies that $Y_n \to 0$ in probability.

Now since Y_n is monotone decreasing, convergence to 0 in probability also implies convergence to 0 almost surely: if there were a set of positive measure where $Y_n \not\rightarrow 0$, then on some (possibly smaller) positive measure set Y_n would stay bigger than some $\varepsilon > 0$ for ever, which contradicts convergence in probability.