Homework sheet 3 - due on 01.12.2015 - solutions of the homeworks

3.1 Let X_{1}, X_{2}, \ldots be independent random variables such that X_{k} can only take that values -1 and $k^{2}-1$, with the probabilities $\mathbb{P}\left(X_{k}=k^{2}-1\right)=\frac{1}{k^{2}}$ and $\mathbb{P}\left(X_{k}=-1\right)=1-\frac{1}{k^{2}}$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.
a.) Calculate $\mathbb{E} X_{k}$ and $\mathbb{E} S_{n}$.
b.) Show that $\frac{S_{n}}{n} \rightarrow-1$ almost surely.
3.2 (homework) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. Prove that the following two statements are equivalent:
(i) $\mathbb{E}\left|X_{i}\right|<\infty$.
(ii) $\mathbb{P}\left(\left|X_{n}\right|>n\right.$ for infinitely many n-s $)=0$.

Solution: The key observation is that for a nonnegative integer valued random variable Y, we have $\mathbb{E} Y=\sum_{k=1}^{\infty} \mathbb{P}(Y \geq k)=\sum_{n=0}^{\infty} \mathbb{P}(Y>n)$. So for the random varibale $|X|$, which is nonnegative but not necessarily integer, the error of such an approximation is at most 1 (choosing, say, Y to be the integer part of X):

$$
|\mathbb{E}| X\left|-\sum_{n=0}^{\infty} \mathbb{P}(|X|>n)\right| \leq 1
$$

in particular $\mathbb{E}|X|<\infty$ if and only if $\sum_{n=0}^{\infty} \mathbb{P}(|X|>n)<\infty$. Now define the events $A_{n}:=$ $\left\{\left|X_{n}\right|>n\right\}$ with probabilities $p_{n}:=\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\left|X_{n}\right|>n\right)$. These A_{n} are independent, so the two Borel-Cantelli lemmas say exactly that \mathbb{P} (infinitely many occur) $=0$ if and only if $\sum_{n=0}^{\infty} p_{n}<\infty$, which is equivalent to $\mathbb{E}|X|<\infty$.
3.3 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

3.4 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(ii) From every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ a sub-subsequence $\left\{n_{k_{j}}\right\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_{j}}} \rightarrow X$ almost surely as $j \rightarrow \infty$.

Solution:

a.) If $X_{n} \rightarrow X$ in probability, then $X_{n_{k}} \rightarrow X$ in probability as well, so for any $\varepsilon>0$ if k is big enough, then $\mathbb{P}\left(\left|X_{n_{k}}-X\right|>\varepsilon\right)$ is as small as we want. In particular, for each j let $\varepsilon_{j}=\frac{1}{j}$ and choose k_{j} so big that $\mathbb{P}\left(\left|X_{n_{k_{j}}}-X\right|>\varepsilon_{j}=\frac{1}{j}\right) \leq \frac{1}{2^{j}}$, which ensures - via the first Borel-Cantelli lemma - that the disaster $\left|X_{n_{k_{j}}}-X\right|>\frac{1}{j}$ happens at most finitely many times, with probability one. This implies $\left|X_{n_{k_{j}}}-X\right| \rightarrow 0$.
b.) If $X_{n} \nrightarrow X$ in probability, then there are $\varepsilon>0, \delta>0$ and a subsequence n_{k} such that

$$
\begin{equation*}
\text { for every } k \text { we have } \mathbb{P}\left(\left|X_{n_{k}}-X\right|>\varepsilon\right) \geq \delta \text {. } \tag{1}
\end{equation*}
$$

Now if, from this subsequence n_{k}, we could choose a sub-subsequence $n_{k_{j}}$ such that $X_{n_{k_{j}}} \rightarrow$ X almost surely, then $X_{n_{k_{j}}} \rightarrow X$ in probability as well, which contradicts (1).
3.5 Let X_{1}, X_{2}, \ldots be independent such that X_{n} has $\operatorname{Bernoulli}\left(p_{n}\right)$ distribution. Determine what property the sequence p_{n} has to satisfy so that
(a) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$
(b) $X_{n} \rightarrow X$ almost surely as $n \rightarrow \infty$.
3.6 Let X_{1}, X_{2}, \ldots be independent random variables. Show that $\mathbb{P}\left(\sup _{n} X_{n}<\infty\right)=1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>A\right)<\infty$.
3.7 (homework) Let X_{1}, X_{2}, \ldots be independent exponentially distributed random variables such that X_{n} has parameter λ_{n}. Let $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$, then $S_{n} \rightarrow \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $S_{n} \rightarrow S$ almost surely, where S is some random variable which is almost surely finite. (Hint: the second part is easy. For the first part, a possible solution is to let x_{i} be such that $\mathbb{P}\left(X_{i} \geq x_{i}\right)=\frac{1}{2}, Y_{i}:=x_{i} \mathbf{1}_{\left\{X_{i} \geq x_{i}\right\}}, Z_{i}:=x_{i}-Y_{i}$ and use that $S_{n} \geq \sum_{i=1}^{n} Y_{i}$.)
Solution: $X_{i} \geq 0$ for every i, so the sum $S:=\sum_{i=1}^{\infty} X_{i}=a s \lim _{n \rightarrow \infty} S_{n}$ always exists - the only question is whether it is finite or not.

The easy second part:

$$
\mathbb{E} S=\sum_{i=1}^{\infty} \mathbb{E} X_{i}=\sum_{i=1}^{\infty} \frac{1}{\lambda_{i}}
$$

(by the monotone convergence theorem), so if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $\mathbb{E} S<\infty$, so S has to be almost surely finite.
To see the first part, assume $\sum_{i=1}^{\infty} \frac{1}{\lambda_{i}}=\infty$. The x_{i} defined in the hint are the half-lives $x_{i}=\frac{\ln 2}{\lambda_{i}}$. The Y_{i} satisfy $0 \leq Y_{i} \leq X_{i}$, so $U:=\sum_{i=1}^{\infty}$ exists as well, and $S \geq U$. It is enought to see that $U=\infty$ almost surely.
Now here comes the hard part: The issue of "the infinite sum being convergent of not" can be decided without knowing the first n elements of the sequence, for every n - so this property depends only on the "tail" of the sequence - thus, as the Y_{i} are independent, the event $\{U=\infty\}$ is independent of all of them, and this can only happen so that $\mathbb{P}(U=\infty)$ is either 0 or 1 . (The precise formulation of this observation is called the Kolmogorov 0-1 law.)
Now that we know that U is either almost surely infinite or almost surely finite, here comes the trick: Set $V=\sum_{i=1}^{\infty} Z_{i}$ with $Z_{i}=\frac{\ln 2}{\lambda_{i}}-Y_{i}$. The Y_{i} are so cleverly constructed that Y_{i} and Z_{i} are identically distributed, so U and V are also identically distributed. But $U+V=\sum_{i=1}^{\infty} \frac{\ln 2}{\lambda_{i}}=\infty$, so U and V cannot be almost surely finite.
Together with the previous argument, this gives $\mathbb{P}(U=\infty)=1$, so $\mathbb{P}(S=\infty)=1$.
3.8 Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution $\operatorname{Bernoulli}(p)$ for some $p \in(0 ; 1)$ but $p \neq \frac{1}{2}$. Let $Y:=\sum_{n=1}^{\infty} 2^{-n} X_{n}$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
3.9 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space and suppose that $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $Y_{n}=f\left(X_{n}\right)$ and $Y=f(X)$, show that $Y_{n} \rightarrow Y$ in probability as $n \rightarrow \infty$.
(b) Show that if the X_{n} are almost surely uniformly bounded [that is: there exists a constant $M<\infty$ such that $\left.\mathbb{P}\left(\forall n \in \mathbb{N}\left|X_{n}\right| \leq M\right)=1\right]$, then $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X$.
(c) Show, through an example, that for the previous statement, tha condition of boundedness is needed.
3.10 Let the random variables $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots, X$ and Y be defined on the same probability space and assume that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ in probability. Show that
(a) $X_{n} Y_{n} \rightarrow X Y$ in probability.
(b) If almost surely $Y_{n} \neq 0$ and $Y \neq 0$, then $X_{n} / Y_{n} \rightarrow X / Y$ in probability.
3.11 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be defined on the same probability space and let $Y_{n}:=\sup _{m \geq n}\left|X_{m}\right|$. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
(ii) $Y_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$.

Solution: For any sequence of numbers a_{n}, if we set $b_{n}:=\sup _{m \geq n}\left|a_{m}\right|$, then we get $b_{n} \rightarrow 0$ if and only if $a_{n} \rightarrow 0$. Moreover, b_{n} is automatically monotone decreasing. So the events $\left\{Y_{n} \rightarrow 0\right\}$ and $\left\{X_{n} \rightarrow 0\right\}$ are the same, so $X_{n} \rightarrow 0$ almost surely if and only if $Y_{n} \rightarrow 0$ almost surely. This of course implies that $Y_{n} \rightarrow 0$ in probability.
Now since Y_{n} is monotone decreasing, convergence to 0 in probability also implies convergence to 0 almost surely: if there were a set of positive measure where $Y_{n} \nrightarrow 0$, then on some (possibly smaller) positive measure set Y_{n} would stay bigger than some $\varepsilon>0$ for ever, which contradicts convergence in probability.

