Probability 1 CEU Budapest, fall semester 2015 Imre Péter Tóth Homework sheet 4 – due on 11.12.2015 – solution of HW 4.9

4.9 (homework) Let $p \in (0,1)$ be fixed, and let q = 1 - p. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} the following way:

The initial position is $X_0 = 0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point a = -10 or the point b = +30, which are *sticky*: if the frog reaches one of them, it stays there forever.

Let X_n denote the position of the frog after n steps (for n = 0, 1, 2, ...).

- a.) Show that $Y_n := \left(\frac{q}{p}\right)^{X_n}$ is a martingale (w.r.t. the natural filtration).
- b.) Show that Y_n converges almost surely to some limiting random variable Y_{∞} . What are the possible values of Y_{∞} ?
- c.) How much is $\mathbb{E}Y_{\infty}$ and why?
- d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point a = -10.

Solution:

a.) The Y_n take their values from the finite set $S = \left\{ \left(\frac{q}{p}\right)^i \mid i \in \{a, \ldots, b\} \right\}$, so of course they are uniformly bounded: there is a $K < \infty$ such that $|Y_n| \leq K$ for every n. So intergability is not an issue. Being adapted to the natural σ -algebra is also automatic, so we only need to check the martingale property.

If $p = \frac{1}{2}$ then $Y_n \equiv 1$ and the statement is trivial. So assume $p \neq \frac{1}{2}$. In this case X_n can be recunstructed from Y_n , so the natural filtration for Y_n is the same as the natural filtration for X_n :

$$\mathcal{F}_n := \sigma(Y_0, Y_1, \dots, Y_n) = \sigma(X_0, X_1, \dots, X_n).$$

Let ξ_1, ξ_2, \ldots be independent random variables with $\mathbb{P}(\xi_n = 1) = p$, $\mathbb{P}(\xi_n = -1) = q$. This ξ_n is the *n*-th jump in the sense that the process can be written as

$$X_{n+1} := \begin{cases} X_n + \xi_{n+1}, & \text{if } X_n \neq a \text{ and } X_n \neq b, \text{ so the frog is not stuck,} \\ X_n, & \text{if } X_n = a \text{ or } X_n = b, \text{ so the frog is stuck.} \end{cases}$$

Then for each n, ξ_{n+1} is independent of \mathcal{F}_n .

Now if $X_n = i$ with i = a or i = b, then the frog is already stuck, so $X_{n+1} = X_n$, which of course implies $Y_{n+1} = Y_n$, so $\mathbb{E}(Y_{n+1} | \mathcal{F}_n) = Y_n$ on the events $\{X_n = i\}$ with i = a or i = b. On the other hand, if $X_n = i$ with a < i < b, then the frog is not stuck, and $X_{n+1} = X_n + \xi_{n+1}$, which means $Y_{n+1} = Y_n \left(\frac{q}{p}\right)^{\xi_{n+1}}$, so

$$\mathbb{E}(Y_{n+1} | \mathcal{F}_n) = \mathbb{E}\left(Y_n\left(\frac{q}{p}\right)^{\xi_{n+1}} \middle| \mathcal{F}_n\right) = Y_n \mathbb{E}\left(\left(\frac{q}{p}\right)^{\xi_{n+1}} \middle| \mathcal{F}_n\right),$$

on the event $\{X_n \notin \{a, b\}\}$. (We have used that $Y_n \in \mathcal{F}_n$.) But ξ_{n+1} is independent of \mathcal{F}_n , so

$$\mathbb{E}\left(\left(\frac{q}{p}\right)^{\xi_{n+1}} \middle| \mathcal{F}_n\right) = \mathbb{E}\left(\left(\frac{q}{p}\right)^{\xi_{n+1}}\right) = p\left(\frac{q}{p}\right)^1 + q\left(\frac{q}{p}\right)^{-1} = q + p = 1,$$

we shown

so we have shown

$$\mathbb{E}(Y_{n+1} \,|\, \mathcal{F}_n) = Y_n$$

everywhere.

- b.) Since Y_n is bounded, the martingale convergence theorem applies and ensures that Y_n is almost surely convergent. Of course the limit can only be a or b where the frog eventually gets stuck: $Y_{\infty} \in \{a, b\}$.
- c.) Since Y_n is a martingale, $\mathbb{E}Y_n = \mathbb{E}Y_0 = \mathbb{E}\left(\frac{q}{p}\right)^0 = 1$. Since the Y_n are uniformly bounded by $K < \infty$, the dominated convergence theorem applies with the integrable dominating function K, and

$$\mathbb{E}Y_{\infty} = \mathbb{E}\lim_{n \to \infty} Y_n = \lim_{n \to \infty} \mathbb{E}Y_n = \lim_{n \to \infty} 1 = 1.$$

d.) Let

$$p_a := \mathbb{P}(X_{\infty} = a) = \mathbb{P}\left(Y_{\infty} = \left(\frac{q}{p}\right)^a\right),$$
$$p_b := \mathbb{P}(X_{\infty} = b) = \mathbb{P}\left(Y_{\infty} = \left(\frac{q}{p}\right)^b\right) = 1 - p_a$$

Then

$$1 = \mathbb{E}Y_{\infty} = p_a \left(\frac{q}{p}\right)^a + p_b \left(\frac{q}{p}\right)^b = p_a \left(\left(\frac{q}{p}\right)^a - \left(\frac{q}{p}\right)^b\right) + \left(\frac{q}{p}\right)^b,$$

 \mathbf{SO}

$$p_a = \frac{1 - \left(\frac{q}{p}\right)^b}{\left(\frac{q}{p}\right)^a - \left(\frac{q}{p}\right)^b}.$$

In our case, when a = -10 and b = 30,

$$p_a = \frac{1 - \left(\frac{q}{p}\right)^{30}}{\left(\frac{p}{q}\right)^{-10} - \left(\frac{q}{p}\right)^{30}}.$$