CEU Budapest, fall semester 2015

Imre Péter Tóth
Homework sheet 4 - due on 11.12.2015 - solution of HW 4.9
4.9 (homework) Let $p \in(0,1)$ be fixed, and let $q=1-p$. A frog performs a (discrete time) random walk on the 1-dimensional lattice \mathbb{Z} the following way:
The initial position is $X_{0}=0$. The frog jumps 1 step up with probability p and jumps 1 step down with probability q at each time step, independently of what happened before, until it reaches either the point $a=-10$ or the point $b=+30$, which are sticky: if the frog reaches one of them, it stays there forever.
Let X_{n} denote the position of the frog after n steps (for $n=0,1,2, \ldots$).
a.) Show that $Y_{n}:=\left(\frac{q}{p}\right)^{X_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Show that Y_{n} converges almost surely to some limiting random variable Y_{∞}. What are the possible values of Y_{∞} ?
c.) How much is $\mathbb{E} Y_{\infty}$ and why?
d.) Suppose now that $p \neq \frac{1}{2}$. Use the previous results to calculate the probability that the frog eventually gets stuck at the point $a=-10$.

Solution:

a.) The Y_{n} take their values from the finite set $S=\left\{\left.\left(\frac{q}{p}\right)^{i} \right\rvert\, i \in\{a, \ldots, b\}\right\}$, so of course they are uniformly bounded: there is a $K<\infty$ such that $\left|Y_{n}\right| \leq K$ for every n. So intergability is not an issue. Being adapted to the natural σ-algebra is also automatic, so we only need to check the martingale property.
If $p=\frac{1}{2}$ then $Y_{n} \equiv 1$ and the statement is trivial. So assume $p \neq \frac{1}{2}$. In this case X_{n} can be recunstructed from Y_{n}, so the natural filtration for Y_{n} is the same as the natural filtration for X_{n} :

$$
\mathcal{F}_{n}:=\sigma\left(Y_{0}, Y_{1}, \ldots, Y_{n}\right)=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

Let ξ_{1}, ξ_{2}, \ldots be independent random variables with $\mathbb{P}\left(\xi_{n}=1\right)=p, \mathbb{P}\left(\xi_{n}=-1\right)=q$. This ξ_{n} is the n-th jump in the sense that the process can be written as

$$
X_{n+1}:= \begin{cases}X_{n}+\xi_{n+1}, & \text { if } X_{n} \neq a \text { and } X_{n} \neq b, \text { so the frog is not stuck } \\ X_{n}, & \text { if } X_{n}=a \text { or } X_{n}=b, \text { so the frog is stuck }\end{cases}
$$

Then for each n, ξ_{n+1} is independent of \mathcal{F}_{n}.
Now if $X_{n}=i$ with $i=a$ or $i=b$, then the frog is already stuck, so $X_{n+1}=X_{n}$, which of course implies $Y_{n+1}=Y_{n}$, so $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}$ on the events $\left\{X_{n}=i\right\}$ with $i=a$ or $i=b$. On the other hand, if $X_{n}=i$ with $a<i<b$, then the frog is not stuck, and $X_{n+1}=$ $X_{n}+\xi_{n+1}$, which means $Y_{n+1}=Y_{n}\left(\frac{q}{p}\right)^{\xi_{n+1}}$, so

$$
\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left.Y_{n}\left(\frac{q}{p}\right)^{\xi_{n+1}} \right\rvert\, \mathcal{F}_{n}\right)=Y_{n} \mathbb{E}\left(\left.\left(\frac{q}{p}\right)^{\xi_{n+1}} \right\rvert\, \mathcal{F}_{n}\right)
$$

on the event $\left\{X_{n} \notin\{a, b\}\right\}$. (We have used that $Y_{n} \in \mathcal{F}_{n}$.) But ξ_{n+1} is independent of \mathcal{F}_{n}, so

$$
\mathbb{E}\left(\left.\left(\frac{q}{p}\right)^{\xi_{n+1}} \right\rvert\, \mathcal{F}_{n}\right)=\mathbb{E}\left(\left(\frac{q}{p}\right)^{\xi_{n+1}}\right)=p\left(\frac{q}{p}\right)^{1}+q\left(\frac{q}{p}\right)^{-1}=q+p=1
$$

so we have shown

$$
\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}
$$

everywhere.
b.) Since Y_{n} is bounded, the martingale convergence theorem applies and ensures that Y_{n} is almost surely convergent. Of course the limit can only be a or b wnere the frog eventually gets stuck: $Y_{\infty} \in\{a, b\}$.
c.) Since Y_{n} is a martingale, $\mathbb{E} Y_{n}=\mathbb{E} Y_{0}=\mathbb{E}\left(\frac{q}{p}\right)^{0}=1$. Since the Y_{n} are uniformly bounded by $K<\infty$, the dominated convergence theorem applies with the integrable dominating function K, and

$$
\mathbb{E} Y_{\infty}=\mathbb{E} \lim _{n \rightarrow \infty} Y_{n}=\lim _{n \rightarrow \infty} \mathbb{E} Y_{n}=\lim _{n \rightarrow \infty} 1=1
$$

d.) Let

$$
\begin{aligned}
p_{a} & :=\mathbb{P}\left(X_{\infty}=a\right)=\mathbb{P}\left(Y_{\infty}=\left(\frac{q}{p}\right)^{a}\right) \\
p_{b} & :=\mathbb{P}\left(X_{\infty}=b\right)=\mathbb{P}\left(Y_{\infty}=\left(\frac{q}{p}\right)^{b}\right)=1-p_{a} .
\end{aligned}
$$

Then

$$
1=\mathbb{E} Y_{\infty}=p_{a}\left(\frac{q}{p}\right)^{a}+p_{b}\left(\frac{q}{p}\right)^{b}=p_{a}\left(\left(\frac{q}{p}\right)^{a}-\left(\frac{q}{p}\right)^{b}\right)+\left(\frac{q}{p}\right)^{b}
$$

so

$$
p_{a}=\frac{1-\left(\frac{q}{p}\right)^{b}}{\left(\frac{q}{p}\right)^{a}-\left(\frac{q}{p}\right)^{b}} .
$$

In our case, when $a=-10$ and $b=30$,

$$
p_{a}=\frac{1-\left(\frac{q}{p}\right)^{30}}{\left(\frac{p}{q}\right)^{-10}-\left(\frac{q}{p}\right)^{30}} .
$$

