Probability 1 CEU Budapest, fall semester 2013

Imre Péter Tóth

Midterm exam, 06.11.2013

Working time: 60 minutes

Every question is worth 10 points. Maximum total score: 30.

- 1. Fix $0 < \lambda \in \mathbb{R}$ and let X_1, X_2, \ldots be independent, identically distributed random variables with a common $Exp(\lambda)$ distribution. Let $a_n = c \ln n$ (for n = 1, 2, ...) with some $0 < c \in \mathbb{R}$. What is the probability that $X_n > a_n$ occurs for infinitely many n-s?
- 2. Let the random variable Y_n have Poisson distribution with parameter n. Does the sequence $\frac{Y_n-n}{\sqrt{n}}$ converge weakly? If yes, what is the limit?
- 3. Is there a sequence Z_1, Z_2, \ldots of random variables which converges weakly to some Z with $\mathbb{E}Z=0$, but $\mathbb{E}Z_n\to\infty$? If no, prove it. If yes, give an example.
- 4. Bob keeps drawing cards from a pile of n different cards, with replacement, meaning that every card drawn is chosen uniformly and independently of the others. Let Y_k^n be the number of draws he needs in order to see at least k different cards, and let $U_n = Y_n^n$ be the number of draws until all cards are seen.
 - (a) What is the distribution of $(Y_{k+1}^n Y_k^n)$, that is, the number of draws he needs to find yet another new card if he has already seen k?
 - (b) Calculate the expectation and variance of U_n .

(c) Find the limit distribution of $\frac{U_n}{n \log n}$.

(1) A. P(X, > an) = e - acan 1 , so if 1 c = 1, then Ip = A =)

P(Xn=9n i.c)=1

if 12>1, then I por <0 => P(X=9, 10)=0

(2)
$$E[e^{iPoi\Omega}] = \sum_{k=0}^{\infty} e^{ikk} \frac{1}{k!} = e^{it} \exp(i2e^{it}) = e^{2(e^{it}-1)}$$

$$\Rightarrow V_{\frac{n}{2}}(H) = e^{it} e^{it} e^{it} e^{it} = e^{it} \exp(i2e^{it}) = e^{2(e^{it}-1)}$$

$$\Rightarrow e^{it} e^$$

4) a.)
$$L_{k}^{n} = V_{k+1}^{n} - V_{k}^{n} \sim Q_{pt} G_{eom}(\frac{n-k}{n})$$
 $i_{k}^{n} = q_{1}l_{1}, -1^{n-1}$,

because $n-k$ out of n cords are unsoon

5.) The L_{k}^{n} are also independent, and $p_{k} = \frac{n-k}{n}$, so

$$E L_{k}^{n} = \frac{1}{p_{k}} = \frac{n}{n-k}$$
, $V_{ar} L_{k} = \frac{q_{k}}{p_{k}} = \frac{k/n}{n-k} = \frac{nk}{(n-k)^{2}}$, and

$$U_{n} = L_{k=0}^{n-1} L_{k}^{n}$$
, so

$$V_{ar} U_{n} = L_{k}^{n}$$

C) Var Un KIEUn, so Var Un _ 1 weakly,

15 Un

1 Var Un

but Elly so Vorthy of weetly.

alated south

9.

#1 Par W but E #2-n-