Mog
Probability 1 ‘1
CEU Budapest, fall semester 2013
Imre Péter Té6th
Midterm exam, 06.11.2013
Working time: 60 minutes
Every question is worth 10 points. Maximum total score: 30.

1. Fix0 < A € R and let X, X5,... be independent, identically distributed random variables
with a common Ezp(A) distribution. Let a, = clnn (forn =1,2,...) withsome 0 < c € R.
What is the probability that X, > a, occurs for infinitely many n-s?

2. Let the random variable Y,, have Poisson distribution with parameter n. Does the sequence
%‘;’—‘ converge weakly? If yes, what is the limit?

3. Is there a sequence Z,, Z,, ... of random variables which converges weakly to some Z with
EZ =0, but EZ,, — oo? If no, prove it. If yes, give an example.

4. Bob keeps drawing cards from a pile of n different cards, with replacement, meaning that
every card drawn is chosen uniformly and independently of the others. Let Y be the
number of draws he needs in order to see at least k different cards, and let U, = Y, be
the number of draws until all cards are seen.

(a) What is the distribution of (Y], —Y}"), that is, the number of draws he needs to find
yet another new card if he has already seen k7
(b) Calculate the expectation and variance of U,,.

(¢) Find the limit distribution of —=—
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